

Mw 12:45-2:00 Sears Library 552

Bill Janesh

ASTR 221 — Stars and Planets

<u>Time:</u>	Mondays & We	Aondays & Wednesdays, 12:45 pm - 2:00 pm						
Place:	Sears Library 55	ears Library 552 (the "Astronomy Classroom")						
Instructor:	Bill Janesh <u>bfj2@case.edu</u>	<u>TA:</u>	Ray Garner <u>crg56@case.edu</u>					
Course Webpage:	http://astroweb.	case.edu/bjanesh	/astr221/ & Canvas for announcements and grades					
<u>Required Text:</u>	Foundations of A	Astrophysics, by	Ryden and Peterson (ISBN 978-1-108-83195-6)					
Other Useful Books:	Astronomy: A Phy	ysical Perspective, 2	2e, by Kutner					
	Introduction to M	odern Astrophysic	s, 2e, by Carroll and Ostlie					
Grades:	Homework:	45%	We will use the CWRU Standard Grading Scheme					
	Midterm:	25%	$(A \ge 90\% \mid B \ge 80\% \mid C \ge 70\% \mid D \ge 60\% \mid etc.)$					
	Final Exam:	30%						

<u>Course Description</u>: Stellar structure and energy production. Formation and evolution of stars. Supernovae, neutron stars, and black holes. Star clusters. Planetary systems and the detection of extrasolar planets. The application of physical laws to the study of the universe.

Disability Accommodations: In accordance with federal law, if you have a documented disability, you may be eligible to request accommodations from Disability Resources. In order to be considered for accommodations you must first register with the Disability Resources office. Please contact their office at 216.368.5230 to register or get more information on how to begin the process. Keep in mind that accommodations are not retroactive.

Homework: There will be a total of **6** homework assignments. Collaborative discussion is permitted and encouraged, but **each person must turn in their own solutions with unique writeup/analysis**. Collaborative means talking with each other about approaches, techniques, etc., and *not* swapping final solutions to copy! **Submissions will be accepted on paper or in PDF format via Canvas**. Write-ups should be typed or *neatly* handwritten. For PDF submissions, scan your handwritten work properly (see homework tips page for suggestions) and please make an effort to merge all parts into a single file for submission. **Homework will generally be due in class** but see each assignment for specifics.

Exams: There will be one midterm and one final exam. You are allowed one sheet of letter/A4-sized paper with notes on both sides, but exam questions will ask you to synthesize information from what you know, not just work a problem or cite facts. You may not work collaboratively with your classmates, and I'll only answer clarifying or format questions. The final exam is scheduled for 12/15 from 12-3pm, please register any time conflicts with Undergraduate Studies. *Academic integrity violations during an exam will result in, at minimum, the failure of the exam*.

<u>Attendance/Late Policy:</u> *Attendance:* you are **encouraged**, **but not required**, **to attend lectures**. I will be recording class audio, which will be posted on the course webpage along with slides and notes. *Late work:* **You get one free no excuse late homework (up to one week).** All other late work loses 20% per day. If you have an emergency or otherwise legitimate reason out of your control for missing a homework due date (illness, technology issues, etc.), please document this with your Navigator and me ASAP. We'll then work out an alternate due date without penalty.

<u>Computing</u>: Some HW assignments will require you to write and run code in Python to solve astronomical problems. Don't worry — we'll spend at least one class getting more familiar with Python before I ask you to use it, but ask for help if you need it. Typed reports can easily be created using a Jupyter notebook, showing formatted text alongside code and math. *If you would like access to departmental computing resources, or have questions or concerns about this aspect of the course, please let me know as soon as possible.*

<u>Office Hours:</u> Mondays and Wednesdays the hour after class ends, and a 90 minute block on Thursday decided by class popular vote, or just drop in! Some questions can probably be answered via email; I will do my best to respond as soon as possible during normal business hours. If you have a question in person, please come prepared — for homework questions, you must attempt the problem on your own first! I will ask you to show me what you've tried before I answer questions. If you're not sure where to start, see the homework tips page.

Ray Tues: 10-11 Fri 2-3

	Date	General Topic	Ryden & Peterson Readings	Due
EK 1	Aug 23	Introductions; Orbits and Kepler's Laws	2.3, 2.5, 3.1	
W_E	Aug 25	Orbits and Kepler's Laws; Gravity; Tides	3.1-3.4, 4.2, 4.3	
EK 2	Aug 30	The Sky; Constellations	1.3-1.6, 2.1, 2.2	
W_E	Sept 1	Celestial Sphere; Coordinate Systems	1.1, 1.2	
EK 3	Sept 6	Labor Day (no class)		
W_E	Sept 8	Light; Radiation; Blackbodies; Spectra	5.1-5.7	HW1
EK 4	Sept 13	Astronomical Techniques; Telescopes	6.1-6.7	
W_E	Sept 15	Python Introduction	bring a computer!	
EK 5	Sept 20	The Sun; Hydrostatic Equilibrium	7.1-7.3, 14.1	
W_E	Sept 22	Distances, Magnitudes, Colors	13.1-13.2	HW2
EK 6	Sept 27	Spectral Types; The H-R Diagram	13.3-13.6, 14.2-14.4	
W_E	Sept 29	Velocities; Binary Stars; Stellar Masses	13.5	
EK 7	Oct 4	Nuclear Fusion; Energy Transport in Stars	15.1-15.4	
W_E	Oct 6	Low Mass Stellar Evolution	17.2	HW3
EK 8	Oct 11	Review!		
W_E	Oct 13	Midterm Exam	don't forget your notes sheet!	
EK 9	Oct 18	Fall Break (no class)		
W_E	Oct 20	High Mass Stellar Evolution; Supernovae	17.3	
IK 10	Oct 25	White Dwarfs, Neutron Stars, Black Holes	18.1-18.4	
WEE	Oct 27	Star Clusters	14.2-14.4, 17.2, 17.3	HW4
EK 11	Nov 1	Interstellar Medium; Star Formation	16.1-16.3, 17.1	
WEI	Νον 3	Star Formation	17.1	
EK 12	Nov 8	Solar System Formation	0102122	
VE		Solar System Pormation	0.1-0.3, 12.2	
	Nov 10	The Earth and Moon	9.1-9.5	HW5
EK 13 V	Nov 10 Nov 15	The Earth and Moon Rocky Planets; Interior Processes	9.1-9.5 10.1	HW5
WEEK 13 V	Nov 10 Nov 15 Nov 17	The Earth and Moon Rocky Planets; Interior Processes Moons; Comets; Asteroids; Tiny Things	9.1-9.5 10.1 11.1-11.4	HW5
EK 14 WEEK 13 V	Nov 10 Nov 15 Nov 17 Nov 22	The Earth and Moon Rocky Planets; Interior Processes Moons; Comets; Asteroids; Tiny Things Atmospheres; Gas Giants	9.1-9.5 9.1-9.5 10.1 11.1-11.4 10.2-10.3, 9.2	HW5
WEEK 14 WEEK 13 V	Nov 10 Nov 15 Nov 17 Nov 22 Nov 24	The Earth and Moon Rocky Planets; Interior Processes Moons; Comets; Asteroids; Tiny Things Atmospheres; Gas Giants Gas Giants	9.1-9.5 10.1 11.1-11.4 10.2-10.3, 9.2 10.2-10.3	HW5
SK 15 WEEK 14 WEEK 13 V	Nov 10 Nov 15 Nov 17 Nov 22 Nov 24 Nov 29	The Earth and Moon Rocky Planets; Interior Processes Moons; Comets; Asteroids; Tiny Things Atmospheres; Gas Giants Gas Giants Exoplanets	9.1-9.5 9.1-9.5 10.1 11.1-11.4 10.2-10.3, 9.2 10.2-10.3 12.3-12.4	HW5
WEEK 15 WEEK 14 WEEK 13 V	Nov 10 Nov 15 Nov 17 Nov 22 Nov 24 Nov 29 Dec 1	The Earth and Moon Rocky Planets; Interior Processes Moons; Comets; Asteroids; Tiny Things Atmospheres; Gas Giants Gas Giants Exoplanets Exoplanets	9.1-9.5 9.1-9.5 10.1 11.1-11.4 10.2-10.3, 9.2 10.2-10.3 12.3-12.4 12.3-12.4	HW5

8/23	Orbits Ø	Kepler's	Laws	· · · · · · · · · · ·	
How	did astcon	ony bec	one a	thing ?	
pari	gation, time,	season)	religion Sky 7
Wha	avi+7				
Why	an , her				
			· ·	· · · · · · · · · ·	
· · · · · · · ·				· · · · · · · · · · ·	

Geocentric Model (E) O Moon Merc Venus Sun Mars Jupiter Saturn) & circular orbits St. retrograde Simplify?.

Heliscentric Model Moon FITCO splere Sun Mercury Venus/ Earth) Mars Jupiter Sat-n Earth Mars

periapse	(closedt	approach	40	sta	()	• •	• •			· · ·	•
peri helion peri ge e	Cp =	a(1-0)	· · · · ·	· · · ·	· · · · · · · · · · · · · · · · · · ·	· · ·	· · · ·	· · ·	· · · ·	
perigalactic	3 ~		· · · · · ·	· · · · ·	· · · ·	· · · · · · · · · · · · · · · · · · ·	· ·	· · · ·	· · · ·	· · · ·	•
apo apse	(furthest		· · · · · ·	· · · · ·	· · ·	· ·	· ·	· · · ·	· · ·	· · ·	•
aphelion apogee apo aztron	ra = 1	a (1 + e)				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·
	efarth	= 0,01	7		· · · ·	· · · · · · · · · · · · · · · · · · ·	· · ·	· · · ·	· · · ·	· · · ·	•

•	•	f	4	2-	ť	f z	י אי גי	ع. ا	>. (م	.'.'	۲ ۲	ج	. 1	-	•	•	•	Ŋ		Ì	+	-	•	•	(1	4	U	, , , , , ,) }	•	•	· · ·	•	•	•	•	•	•	•	· ·	•	•	•	•	•	•		• •	
•	•	• •	• •	· ·	ι	n N	re	- 6		•	•	ð	\ (5)	- - 				•	•	Ь	e		~		J		· ·	1	E	۰ ۴	-H		· ·	R	•	S	من ر	د م	• 1	``	• •	•	•	•	•	•	•		• •	
•	•	• •	• •	• •	•	•	•	•	•	•	•	•	l	5	0 0	•	•		n M	il I	M	0		-	k	~~	- ·	• •	9		3	•		ni		l'o		•		n' n'	10	5	•	•	•	•	•	•	•	• •	
•	•	• •	• •	• •	•	•	•	5	e	r M	ì	ب د		Ň	د- ())		•	•	Ģ	.+		S	•	•	C	• (-			ļ	Ę	L.,	łh	S	•	•	6		י גי גי	+	•	• •	•	•	•	•	•	•	• •	• •	
•	•	• •	• •	• •		•		•			•		•		•	C	(•	•			•	ĺ			D		· ·	•	A)	0	• •	•	•	•		•		•	• •		•				•	•	• •	
•	•	• •	• •	• •	•	•	0	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	• •	• •	•		•	•	•	· ·	•	•	•	•	•	•	•	· ·	•	•	•		•	•	• •	••••	
•	•	• •	• •	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	· ·	• •	· ·	•	•	•	•	•	· ·	•	•	•	•	•	•	•	· · ·	•	•	•	•	•	•	•	· ·	
•	•	• •	• •	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	• •	• •		•	•	•	•	• •	•	•	•	•	•	•	•	• •		•	•	•	•	•	•	••••	
•	•	• •	• •	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	• •	••••	•	•	•	•	•	· ·	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	• •	•••	

	a	e	P
Mercury	0.39 AJ	0.205	0.24 years
Venus	0.72	0.007	0.62
Earth	ه ا	0,017	ι. σ
Macs	l. 52	0,093	
	5.70	0,048	11.86
Jupiter		A 554	29,45
Saturn	9.54		84 07
$\int c \omega n \omega d v$	19.19	0.047	
NEDTURE	30.07	0.009	ા દય. ૪
	20 115	0.250	247.9
	37174J		
Comets	varies	0.75-0.995	

Kepler's Bro	LLaw	· · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · ·	· · · · · · · · · ·
"for all	planets,	the orbital	period	Squared
divided	by the	semi - Major	atis cube	d
· · · · · · · · · · · · · · · · · · ·	is con	start. ^{li}		· · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	P ²	a Ka 3		· · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	yeors	Ao	· · · · · · · · · · · · · ·	· · · · · · · · · ·
		· · · · · · · · · · · · · · · ·	· · · · · · · · · · · · ·	· · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · ·		

Kepler's 2nd Law	• •
The Law of Equal areas	• •
"The line connecting a placet é le son sweeps out equal areas in equal amounts of time."	· · · · · · · · · · · · · · · · · · ·
plan ets more Faster in their orbits when they are closer to the Sun	 . .

Kepler's	177 Law Rev	his it ed	· · · · · · · · · · ·	
The	Earth does	not c	rbit the	Sun. (?)
Each	object noves	on an	ellipie	-1 COM
и۲	ore focus	of the	ellipse.	
	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·
· · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · ·	· · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
				· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · ·	· · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·

Kepler's 2nd La	in Revisited	
d e dA	rdø dA=-	$\frac{1}{2}r(rd\theta)$
$\vec{l} = m(\vec{\tau} \times \vec{N})$	d A Jt =	$\frac{1}{2}r\left(r\frac{d\theta}{dt}\right)$
	lo = r v o =	$\frac{1}{2}$ r NQ
dA Tt	= 1 L = 2 M	
consta	nt	

Kepler's 3rd Law Revisited	$G = 6.67 \times 10^{-17} \text{ m}^3$
$F_g = GMm$ $F_{cent} = MN^2$	Lgs ²
$G_{r}^{Mm} = mN^{2} \qquad N = \frac{1}{r^{2}}$	$\frac{2\pi\Gamma}{P} \Gamma_{r} = \frac{M}{m+M}r$
$G_{r}^{MM} = M \frac{4\pi^{2}}{p^{2}}$	
$\frac{G_7M}{r^2} = \frac{4Tr^2}{P^2} \frac{M}{M+M}r$	$G = 4\pi^2 \frac{Au^3}{M_0 \gamma r^2}$
$P^{2} = \frac{4\pi^{2}}{G(M+M)}r^{3} = a^{3}$	

Does an orbit have	e to be an ellipse
or a circle	?
Orbital Classification	
elored v	open
Etot < O	Et. 7 3 3
Kinetic e potential	kinetic > potential
bound	unbound
circular, ellipitici	hyperbolg
$E_{tot} = 0$	<u>. </u>
kinctic z	polentic)
parabolic	•••••••••••••••••••••••••••••••••••••••

Gravitational Potential Energy push it away from the sun $= -\int_{r}^{r_{f}} \vec{F} d\vec{r} = -\int_{r}^{r_{f}} G \frac{Mm}{r^{2}} dr$ NU = -GMm(1 - 1) $v_t - v_i$ $\Xi 0$ U = -GMM $K = \frac{1}{2} M N^2$ planet

K t U = constat $E_{tot} = \frac{1}{2}mN^2 - \frac{GMm}{\Gamma}$ $O = \frac{1}{2}mN_{esc}^2 - GMM$ Nesc = $\left(\frac{2GM}{F}\right)^{1/2}$

 $p^2 = \frac{4\pi^2}{GM} a^3$ $N_c = \frac{2\pi a}{\rho}$ $N_{c}^{2} = \frac{4\pi^{2}a^{2}}{\rho^{2}}$ $W_c^2 = \frac{4\pi a^2}{3} G_M = 7 \quad N_c^2 = \frac{G_M}{Q}$ Etot = 2 MN2 - GMM $= \frac{1}{2}m\frac{GM}{q} - \frac{GMM}{q}$ $=\frac{1}{2}U$ z - Gmm

Generalized Orbital	Speed		• •	· ·	· ·	• •	· ·	• •	•	• •	• •		• •	•
$\perp m v^2 - G M m$	-GMM	· · ·	• •	• •	• •		• •	• •	•	• •	• •	• •	• •	•
2 7 -	Za		• •	• •	• •	• •	• •	• •	•	• •	• •	• •	• •	•
$\frac{1}{2}mN^2 - \frac{GmK}{2}$	GMN	· · ·	• •	· ·	· ·	• •	· ·	• •	•	· ·	· ·	• •	•••	•
$n^{2} - cm(\frac{2}{2} - $		· · ·	• •	· ·	· ·		• •	• •	•	• •	• •	• •	• •	•
·V 2 9/1 (r	a)		• •	· ·	· ·	• •	· ·	· ·	•	· ·	· ·	• •	••••	•
Perchelion Np ² = GM (1+e)		· · · ·	· ·	· ·	· ·	• •	· ·	· ·	•	• •	· ·	• •	· ·	0
1 2 GM (I-e	· · · · · · · · · · · · · · ·	· · ·	• •	· ·	· ·	• •	· ·	• •	•	• •	• •	• •	· ·	•
aphillion Na = - a [T+e		· · ·	· ·	· ·	· ·	• •	· ·	· ·	•	· ·	· ·	• •	• •	•

E Moon W Looking South circumpola stars Latitude ? 90° - l' \mathcal{W} 42 Looking North

Above the horizon	Zenith V Alt = +40° Nadir	Altitude - Azimuth "Horizon "Systen latitude - longitude
Equatorial Coordinates - aligned to Earth's > - d, l = 0, 0 => wh - declination (latitude) RA - right ascension (longitu	ystem (ere the ecli 1 the vernal 8 degrees de) & hour	0 0 $00, \ell, \Gamma)0, \ell, \Gamma)11111111$

1 Nour	= 15 degrées
hours	degrees
Minutes	!= arcminutes 160 degree
seconds	! = arc seconds 1/60 arcminute
(5h 5	$5^{n} 12^{s} 12^{i} 5^{i} 25^{i}$
Angula- Sep Da =	mation (DO) degrees, arcmin
Δ	$\Delta \theta$ Cos ϕ Celestial equator
$(\Delta Q)^2 =$	$(\Delta R \cos 8)^2 + (\Delta 8)^2$

Sidereal Time
the amount of 'clock time' since the
vernal equinox crossed the meridian
the RA coordinate of a star crossing the maridian at a given point in time
meridian = the line that passes through North, Zenith, South
perpendicular to horizon
Betelgeuse = 5h 55m

Light	· · · · · · · · · · · · · · · · · · ·
What is light?	· · · · · · · · · · · · · · · · · · ·
"Sometimes" it's a wave	
"sometimes" it's a particle -> pho	ton
Fast! 3×10° mls 3×10 [°] mls	
Energy	
some behavior can be described by	a wave ~
	particle how?

Wave		particle	
wave length		photo electric	c effect
double-slit e	r periment	travel over l	org dofances
Doppler ef	rtect	Momentum	E = pc
ontenna		scavity	
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	

Electromagnet	ic Spectrum	
λ	5 = C	
warelength leagth	Frequency speed of light Utime length/fime	. .
EM bmds	high 5	· · · · · · · · · · · · · · · · · · ·
Gamma Ray.	$s \lambda < lam$	Aystrom = 0.1nm
X- rays	l nm < X < 10 nm	$A = 1 \times 10$ m
UV Visible Coptica	1) LO NM () (700 MM	
IR	$700 \text{ nm} \leftarrow \gamma \leftarrow 1 \text{ mm}$	why is
Microwave Radio I	lmm C> Llocm	lisht useful?

elemental co direction of	mp es i tion motion				· · ·
p(l)ence st	light - emiliting o	bjects			
temperature			· · · · · · · · ·	· · · · · · · · · · · ·	• •
density		· · · · · · · · ·	· · · · · · · · ·	· · · · · · · · · · · ·	• •
Kircho ff ¹ s	Laws		· · · · · · · · · ·	· · · · · · · · · · · ·	••••
l. a hot, d continuous	une gas or se spectrum l	olid object of all warele	emits a Nother, unbe	oley "	· · ·
Z. hot, diff. "emission	use gas productions of the spectrum "	es bright	spectral	الأروب	· · ·
3. a cool, di	ffuse gas in fr	water of a	continuo	us spectrum	•••

Planck Equation BX(T) = Materiality	$\frac{2hc^2/\lambda^5}{(hc/\lambda kT)-1}$	h = Planck $k = Boltzmann$ $c = Speed of light$
L, d) -	b, (T) dh dA	cord A
	M m	3
Telescopes	. .	
--	---	
what is a nucscope. why is it useful (for	astronomy?	
lenses al Missors		
Magnification / Resolution Different EM bands	· ·	
see to further distances	· · · · · · · · · · · · · · · · · · ·	
Light Gathering Power LGP & d = Are	bigger 53 better	

Resolution	"see more defail	smaller is
Limited by	diffraction of lish	it is better
	just	
Rayleigh Criteri uminimum resoluable angular distance between two objec	on two objects are just resi when the centre overlaps the lat	Airy Disk Airy Disk radians 1.22 A plued min = 1.22 A min = D al maximum minimum of minimum of diameter

Simplest	Possible de	lsign - 6	single less	
Stars		Lens	Focal plan	ne
		θ	λ.	angular separation O
			F	size of image
	$ton \theta = \frac{d}{F}$	- No - No	Focal length w for away	
radim	$ \begin{aligned} \theta &= \frac{\partial}{\xi} \\ \theta &= 200, 20 \end{aligned} $	rco $rd = \frac{197}{T}$	$\frac{1}{2} + \frac{3600}{10}$	plate scale $S = \frac{Q}{d} = \frac{200265'}{F(m)}$

•												
•												
•												
•												
•												
						•		•			•	
•												
•												
•						•		•			•	
•						•		•			•	
	-	-	-	-	-		-		-	-		

Spheric al	abberation	
· · · · · · · · ·	astig mal-ism	· · · · · · · · · · · · · · · ·
	Inside focus	Outside focus
	0)(\bigcirc

Hybrid d schmidt	esyn f.ppe	Ritchey - Chré	itu			
	lens	hyperboloid	mirro-	. د		
			· · · · · · · · · · ·	· · ·	· · ·	· · ·
\checkmark m	.<			· · ·	· · ·	· · ·
practical	considerations			· · ·	· · ·	· · ·
funding	damaje	training	· · · · · · · · · · · ·	· · ·		· · ·
Stography	man fact-ring	lijht	pollotvan			
demmd clord>	mo-ring desting type of observe	on at vation	mogphere	· · · ·	 	

Spectrographs	disperse light by wavelength
	using prisms or gratings
	gratings more common in
Focus —	modern applications -> reflective
Grating	transmission
Red — Blue —	works by diffraction $d \sin \theta_m = m\lambda$ $2 \sqrt{\lambda^2}$ $1 \sqrt{\lambda}$
- Camera CCD - Collimator	slit spacing angle integer wavelength of order diffracted
	Resolution $R = \frac{\lambda}{\lambda\lambda}$ wavelength distance between distinguishable features

Detectors	Quatum Efficiency
the human eye	" how many incident photons
photographic enclosions	do you detect?"
(fil-1 plates)	eyes - AFR 12
photo electric effect devices	$F_{1}m = -12$
-photo emissive Multiplier tubes	multiplier - 10 % veribe
- photo conductive charge - coupled devices (CCDs)	2 08 - 2022
what are advantages of	"artificial" detectors
over the human eye?.	
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·

Combining images from multiple telescopes to create an image with higher resolution. Usually used in radio astronomy to improve resolution at very long wavelengths $\mathcal{O}_{min} = \frac{1.22 \lambda}{D}$ Resulting image has same resolution as a single dish with size = separation between to shaller telescopes ! but not the same light gathering power!	terfero metry			
create an image with higher resolution. usually used in radio astronomy to improve resolution at very long wavelengths $\mathcal{P}_{min} = \frac{l_i ZZ}{D}$ Resulting image has some resolution as a single dish with size = separation between to sheller telescopes ! but not the same light gathering power!	Com bining	images fr	ion multiple te	lescopes to
resolution at very long wavelengths $\mathcal{O}_{min} = \frac{1.22 \lambda}{D}$ Resulting image has some resolution as a single dish with size = separation between to sheller telescopes ! but not the same light gathering power!	Create	an image	with higher	resulution.
resolution at very long wavelengths $\theta_{min} = \frac{1.22 \lambda}{D}$ Resulting image has some resolution as a single dish with size = separation between to sheller telescopes! but not the same light gathering power!	usually	ursed in	radio astrono my	to improve
Resulting image has some resolution as a single dish with size = separation between to sheller telescopes ! but not the same light gathering power!	resolution	at very	long wavelengths	Qmin = 1,22 h
but not the same light gathering power!	Resultiny dish wi telescopes	imaje has th size	same resolution = separation be	n as a single etween to smaller
	Ę	ort not th	he same light	gathering power!
			· · · · · · · · · · · · · · ·	

Angular Size	w/ sa	nall anyle size	- aprox
1 Full circle 360°	dista	nce =	206,265 "/rad
1 degree = 60' 1 arcmin = 60"			
sizes of things in sky sky 180°	naked eye limit	30	. .
big dieper 240	at mospheric turbulence "seeing"	- l''''	D. 5 "
thumb le homes (" length	resolution limit HST	ອ.ເ ^ແ 0.03	ų
Moon [SUN SO - U.U Jupiter 40"	rearest star		· ·

How world	you Measure	distance in	space?	
trigonomet	ric parallax	• • • • • • • • • •		
standard	candle -	something we l	know the lumin	is spectroscopic pamillax "
Hrigonomet	cic parallax		· · · · · · · · · · · · · · ·	
. .	E Sun 2		$\frac{p \text{ orallax angle}}{p} = \frac{1}{2} \theta$	
		2	$d = \frac{1}{ton P}$	= 1 AU in P adians

$d = \frac{20}{-1}$	6265"/rad P" AU	
define a	parsec	
	1 pc = 206, 265 AU	
	$d = -\frac{1}{p} p c$	parsec is distance when $p = 1^{11}$
. .	parallat arcsecond	nearest star proxima cen
Smallest "possi	1 p c = 3.26 ly ible ^{lii} $p = N20$ microarcsec $N 0.000$	4.2 ly $P = 0.77^{1}$ = 50,000 pc

Brightness Luminosity (W)	Eintrinsic property Etotal energy output of star
Brightness (w/m2) aka "flux"	how bright the star appears observed from a given distance
p =	$-\frac{L}{4\pi d^2}$
$L_{sun} = 3.8. \times 10^{-10}$ $L = 1.5 \times 10^{-10}$	$b = \frac{3 \cdot 8 \times 10^{26} \text{ W}}{4\pi (1.5 \times 10^{11} \text{ m})^2}$
$L = A \sigma T^{4}$ $= 4\pi R^{2} \sigma T^{4}$	= 1,344 W/m ² " golar constant"

6 900 95	- lst brightest 2nd	human eye's response to light is logarithmic
100 x brightauss ratio	Srd 4th 5th	groups separated by flux ratios, not difference
ditteren to re	Le of 5 magaitud ntio of 100 in	equal "logarithmic scale" prightness
	$(m_2 - m_1)/5 = 100$	5/5 = (00 = (00

 $b_1 = 2(m_2 - m_1)/5$ $b_2 = 10$ $b_1 = (0.4 (m_2 - M_1)) = (0.4 (m_2 - M_1)/2.5)$ lojo (10 (m2-M1)/2.5) = logio b2 m2-m, 12.5 = log10 bilbz Why? M2-M, - 2.5 logio bilbz $m_2 - m_1 = -2.5 l_{0ji0} \frac{b_2}{b_1}$

Spectroscopic porallax	
magnitudes	DM = 5 -> Loo: 1 brightness
log scale Dm = Flux ratios	$\Delta m = 1 - 2.512 \cdot 1 = 2.512 \cdot 1$
Smaller apparent Magaztu	des (more negative) are brighter
Sun -26,8 Sirius -1.46	$M_1 - M_2 = -2.5 \log (\frac{f_1}{f_2})$
Vega 0.000000000	M apparent magnitude b= <u>L</u> 4ITd ²
naked eye ~ + b limit	M absolute magnitude $b = \frac{L}{4\pi(10pc)^2}$
theoretical limit + 29 For current modern telescopes	$M - M = -2.5 \log_{10} \left(\frac{1}{4\pi a^2} \right)$

$M - M = -2.5 \log_{10} \left(\frac{1}{4\pi a^2} \right)$	
$M - M = -2.5 \log_{10} \left(\frac{10^2}{d^2} \right)$	$-\log(x^2) = +Z \log x$ $\log(\frac{x}{y}) = \log x - \log y$
$M - M = -2.5 \log(10^2) + 2.5 \log(d^2)$	
M-M = -5 logtof + 5 log d	
$M - M = 5 \log d - 5 distance$ A in parsecs	modulus
Mson = 4.76	

Adding	Majnitudes			
M	i t mz	M:2.5	log (L/utidi)	· · · · · · · · · · · · · ·
	. .	M2 2,5	l_{y} (L2/ $y_{\pi}d_{2}$)	. .
· · · · · · · · ·				· · · · · · · · · · · ·
· · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · ·
· · · · · · · · ·				· · · · · · · · · · · · ·
· · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · ·
· · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · ·
· · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · ·

ou know about the Sun?
· · · · · · · · · · · · · · · · · · ·
R_{o}
H-7 He
THE 5710K "Surface
pale yellor temp
R=6,96 X105 km = 1 soler
1 - 3 - 8 × 102 w = 1035 co/2
0- J. J. John Lominosity
$M_0 = 1.99 \times 10^{30} \text{ kg} = 1 \text{ solar}$

chemi	Cal Lompo	si + i sn	
by ma	-ς. J	by #	
70%	H	92,1 % H	
2 ۹ ° ,	He	7.8 ° He	
	every thing	O.1 ~ "mitals"	
	elle	and the later	
0 	IN, C, Ke, My,	סי אינדבו	
Meor	, density	1, 440 48/ms	Cool, dark sinking gas
Meor	, N, C, Fe, My, density	51 MCtal 1, 440 48/m ⁵ 60	Nection 1.0 Ro Cool. dark Hot, bright sinking gas
Mer	, N, C, He, My,	J_{i} γ_{i} U_{i} γ_{i} U_{i} γ_{i} U_{i} U_{i} U_{i} U_{i} U_{i} U_{i} U_{i}	Nection 1.0 Roll of the constant of the consta
Men	N, C, He, My,	$\int \frac{1}{\sqrt{2}} \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2} $	ndection 10 R° + + + + + + + + + + + + + + + + + +
Men	N, C, He, My,	$\int \frac{1}{2} $	ndection 10 ^R adiation zone 0.714 ^R 0.714 ^R 0.3 ^R Nuclean Nuclean Nuclean

	С	6	r • 9	· •		V ¹			
	۰,		1						
	A	V	۲	11	١Ľ	1			
					· Y				
		Ĺ	ΪN		i				
	÷ •	+	0	r'a	1				
			ċ						
	5	90	X (~					
	. 6	<u>2</u> c	λj	0	1	/			
				X					
								•	
	•			•					
	•			•					

Solar, Flare

Hydrostatic Equilibrium	
gravity us. pressure	density = $p(r)$
dA dr	volume = dr dA
Fsrev	mass dm = p(r)drdA
T TEPRESS	= -GMm - GM(r)dm
	-GM(r) p(r) dr dA
· · · · · · · · · · · · · · · · · · ·	
	-) P(-) d - d A
tgravgc	
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·

net	pressure = P(r+dr) - P(r)
· · · · · · · · · ·	Fpress = (P(r+dr) - P(r)) dA = dPdA
	Fpress = Fgrav
· · · · · · · · · ·	dPdA= -g(r)p(r)drdA
· · · · · · · · · ·	dP = -g(r)p(r)dr
	$\frac{dP}{dr} = -g(r)p(r) = -G(M(r)p(r))$
· · · · · · · · · · ·	

Central Pressure a >> une CP> = 1440 48/m3 $M(r) = \frac{4}{3}\pi r^{3} < p?$ $\frac{dP}{dr} = -\frac{GM(r)p(r)}{r^2} = -\frac{4}{3}GTr^3(p)(p)$ $\frac{d\rho}{d\Gamma} = -\frac{2}{3}\pi G (\gamma < \rho)^2$ $\int dp = -\frac{4}{3}\pi G < p^{2} \int r dr$ $P_{c} = -G^{2}/(3\pi L_{p})^{2} \frac{1}{2}R^{2}$ Central pressure

	· · · · ·	· · · · · · ·			2 TT 6	م ک ج	$r^2 R^2$	· · · · ·	· · · · · ·	· · · · ·	· · · · · · ·
· · · · ·	· · · · ·	· · · · · · ·	$P_c =$	2.5 X	10 12 1)/mz	· · · · · ·	· · · · · ·	Mari	2 11	Trench
· · · · ·	· · · · ·	· · · · · ·		2 2 20	o 5111	ion	atm		,070	o ato	<u>~</u>
	· · · · ·	· · · · · ·		· · · · · ·	Τ=	15	million	K		· · · · ·	· · · · · · ·
	how	do.	WE		- He	- m	(5) of	FL	č Sv	~ ~ ~	
				P 2 2	4TZ	- 3 - a			· · · · · ·		· · · · · · ·
· · · · ·	· · · · ·	· · · · · · ·	· · · · · ·		54	· · · · ·	 	· · · · ·		· · · · ·	· · · · · · · ·
· · · ·	· · · ·	· · · · · ·	· · · · ·	· · · · · ·	· · · · · · · ·	· · · ·	· · · · · ·	· · · · ·		· · · ·	· · · · · · ·

Vulouities notions of stac	away
	toward
	$\lambda_{obs} - \lambda_{rest}$
483pm 656m	$\overline{\rangle}$ rest = Z "redshift"
	$Z = \frac{Vr}{C}$ velocity
Li proper motion	

HW 3 Equation Reminders magnitudes/fluxes $m = -2.5 \log f$ $d = \frac{1}{p''}$ parsecs, arcseconds $2.5 \log\left(\frac{L}{4\pi d^2}\right)$ parallax distances m - M = 5 Logi. d - 5 M, - M2 = -2.5 log 51/f2 apparent absolute magnitude in parsecs magnitude differences distance modulus $q = 4\pi^2$ $\frac{X}{d} = \frac{\theta''}{206,265''}$ $P^{2} = \frac{4\pi^{2}}{G(M_{1}+M_{2})}a^{3}$ in AU Yr L= 4TTR2 OT4 Mo luminosity Kepler's 3rd Law

"proper motion"	· · · · · · · · · · · · · · · · · · ·	
Measure side - to -	side velocity	
· · · · · · · · · · · · · · · · · · ·	typically measure of paralla	\mathcal{L}
· · · · · · · · · · · · · · · · · · ·	change in sky position over	time
	$\mu = PM$ in "/year	• • • • • • • • • • • • • • • • • • • •
N* _	$- \frac{10}{2} = \frac{10}{2}$	No = 4.74 nd
N. Nrec	- dt d	[km/s] ["/yr][pc]
	therefore "true space motion"	· · · · · · · · · · · · · · ·
	$V_{\star}^2 = V_{rec}^2 + V_{\theta}^2$	· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·	
Binary Stars (+	exoplanets)	· · · · · · · · · · · · · · · · · · ·
-----------------	---	---
get mass from o	bserving or bits	· · · · · · · · · · · · · · · · · · ·
50 °C of all	stars in binary Cor	bigser) systems
Visual Binaries	18 ⁵⁰ 18 ⁶⁰ 18 ⁷⁰ 18 ⁸⁰	1900 1910 1920 1930 1950 1900 1910 1920 1930
Sirius A+B	y 10	stars and to
	5	be close or
		far apart to
7		resolve orbits
	-5	usually takes
		decades to get
	-10 -5 0 5 10 x	hish quality data

Mass of a star is	s the Eurodamental defining	property
L & M ⁴		
Initial Mass Function		
More massive stars less common		
1 M_{0} 1 LO M_{0}		δuη · · · · · · · · · · · · · · · · · · ·
service lifetime	10^{-5} $M_{min} = 0.08 M$ 10^{-5} 30.000 10.000 6.000 3.000	9
tms x m2.5		

Nuclear Fusion / protons	
4 Hydrogen -> 1 Helium • neutrons	
· electrons	
Atomic Mass Unit	· · ·
1 AMU = 1/12 carbon atom = 1.66 × 1527 kg	· ·
$E = M C^2$	
= 931, 5 million electron Volts (MeV)	
$1 eV = 1.6 \times 10^{-19} J$	• •

$M_{\rm H} - M_{\rm p} - M_{\rm c} = -13.6 {\rm eV}$	
binding energy	
H tenersy = proton + ele	c trs γ
4H - 1 He = +26,71 MeJ	0,7% of total mass
$E = 0.007 (0.1 \times M_0) c^2$ = 1.3 × 10 ⁴³ J / L_0	

•	•	(-	ĺ	á	5	Ś	•	•		Te	el	C	2	[D	P	e		•	•	. N	J		51	X I	[-	• •	•			Ŵ	L	d	•	 . (a		•	8	P	~	n	· •			•	•	•	• •
•	•	M	Ĺ	ď	U	re	۲.	~	•	•	•		a	Į	5	0	•	•	•	•	V	J	L	L	•	•	•	i	٨	•		c (9	5	2	• •	•	•	•	•	•		• •			•	•	•	•	• •
•	•	•	•	•	• •		•	•	•	•	•	•	•	d	0) \ \	ł	•	f	- - 0		je	+	•	•	. Y	í í	J	-	•		cl	ر	۰ ۲	е (< 	sh	ei	t	•	•	•	• •	· ·	•	•	•	•	•	• •
	•						•	•	•	•	•					•	•	•			•		•			•				•	•	•	•	•	•		•	•	•	•	•					•		•	•	
													•		•										•																									• •
•	•			•					•	•	•		•	•	•	•		•		•	•	•	•		•														•										•	• •
•	•			•	• •				•			•	•		•	•					•		•		•			•								• •		•			•		• •						•	• •
																																												, ,						
																																												, ,						
	•									•	•		•		•	•					•		•		•	•																•								• •
										•	•					•	•	•																	•	• •			•		•	•							•	• •
•	•			•	• •					•	•		•		•	•			•	•		•			•		•									• •			•				• •						•	• •
													•		•										•																			, ,						
																																				• •						•								• •
							•		•								•	•																	•	• •		•	•		•								•	• •
				•						•	•						•	•																	•	• •			•		•								•	• •
	•			•	• •				•			•	•		•	•					•		•		•			•								• •		•			•		• •						•	• •

Proton - Proton Chain	proton -	Н
Step 1 deuterium = 1p+1n	4He > 2	p + 2 n
$H + H \Rightarrow H + e^{+} + \gamma$	Lo mi	llion K
position neutrino		· · · · · · · · · · ·
step Z	· · · · · · · · · · · · · · · · · ·	· · · · · · · · ·
2H + 1H => 3He + 8 = Zptla gamma Cay ph	-ton	· · · · · · · · · ·
repeat step 1 & step 2	3 2 He
	· · · · · · · · · · · · · · · · · ·	

step 3: most common 69°2 of the fine	
$PPI {}^{3}He + {}^{3}He \implies {}^{4}He + {}^{'}H + {}^{'}H$	
31°6 of tlime	
³ He + ⁴ He => ⁷ Be + 7 PPI ⁷ Be + e^{-} => ⁷ Li + 7	4He = alpha
7Li L'H => 4He F4He	
0.3 ° of the time 7 Be + 1 H => $^{8}B + 7$ PPII $^{8}B => ^{8}Be + e^{+} + 7 \parallel ^{3}Be => He$	spallation 1 He

 ${}^{1}_{1}\mathrm{H} + {}^{1}_{1}\mathrm{H} \longrightarrow {}^{2}_{1}\mathrm{H} + e^{+} + \nu_{e}$ $^{2}_{1}\text{H} + ^{1}_{1}\text{H} \rightarrow ^{3}_{2}\text{He} + \gamma$ 69% 31% ${}^{3}_{2}\text{He} + {}^{4}_{2}\text{He} \rightarrow {}^{7}_{4}\text{Be} + \gamma$ ${}_{2}^{3}\text{He} + {}_{2}^{3}\text{He} \rightarrow {}_{2}^{4}\text{He} + 2 {}_{1}^{1}\text{H}$ (PP I) 99.7% 0.3% $^{7}_{4}\text{Be} + e^{-} \rightarrow ^{7}_{3}\text{Li} + \nu_{e}$ ${}^{7}_{4}\text{Be} + {}^{1}_{1}\text{H} \longrightarrow {}^{8}_{5}\text{B} + \gamma$ $_{3}^{7}\text{Li} + _{1}^{1}\text{H} \rightarrow 2 _{2}^{4}\text{He}$ ${}^8_5\mathrm{B} \rightarrow {}^8_4\mathrm{Be} + e^+ + \nu_e$ (PP II) $^8_4\mathrm{Be}
ightarrow 2\,^4_2\mathrm{He}$ (PP III)

			• •						• •	• •		• •			• •		• •			• •			• •	• •					• •				• •	
• •			• •	• •	1	2			• •	• •		• •			• •		• •			• •	• •		• •	• •					• •				• •	
			• •	<u> </u>	0 "					• •		• •								• •	• •		• •	• •					• •			3 0	• •	
			• •							• •		• •								• •	• •		• •	• •					• •			3 0	• •	
			• •																		• •		• •	• •									• •	
			• •		55	6															• •		• •	• •									• •	
			• •	· ť	0					• •		• •				•				• •	• •		• •	• •					• •				• •	
			• •	• •		· - · ·				• •		• •				•				• •	• •		• •	• •					• •				• •	
				1	03	9.																												
					ป	C										-											-							
					10	`																												
					, 3	9			7.6		M	eU																						
					0		×.				Ĩ.,																							
						39			· ()		5																							
					ίò			146	ίV.	./ ~	<u>ر</u>																							
						• •									• •	•	• •	•		• •		•	• •					•	· ·	•			• •	
								•		• •	•	• •	• •	•	••••	0	· ·	0	, , , ,	••••	• •	•	· ·	••••	•	• •		•	• •	•			• •	
		•	• •	0 0	• •	• •	• •	•	· ·	• •	•	· ·	• •	•	• •	•	· ·	•	· ·	· ·	· ·	•	· · ·	· ·	•	• •		•	· ·	•	•	• •	• •	
• •	•	•	• •		• •	• •	• •	•	· ·	· ·	•	· ·	· · ·	•	· ·	•	· · ·	•	· ·	· · ·	• •	•	· · ·	· ·	•	• •	· · ·	•	· ·	•	•	· ·	· ·	
• •	•	•	· ·	· ·	· ·	· ·	· · ·	•	· · ·	· · ·	•	· · ·	· · ·	•		•	· · · · · · · · · · · · · · · · · · ·	•		· · · · · · · · · · · · · · · · · · ·	• •	•	· · ·		•	· ·		•	· · ·	•	•	· · ·	· · ·	
· ·	•	•	· ·	· · ·	· · ·	· · ·	· · ·	•	· · ·	· · · · · · · · · · · · · · · · · · ·	•	· · ·	· · · · · · · · · · · · · · · · · · ·	•	· · · · · · · · · · · · · · · · · · ·	•	· · ·	•		· · · · · · · · · · · · · · · · · · ·	· · ·	· · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	•	· · ·		•	· · · · · · · · · · · · · · · · · · ·	•	•	· · ·	· · · · · · · · · · · · · · · · · · ·	
· · ·	•	•	· · ·	· · ·		· · ·	· · ·		· · ·	· · · · · · · · · · · · · · · · · · ·	•	· · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	•	· · · · · · · · · · · · · · · · · · ·	•		· · · · · · · · · · · · · · · · · · ·	· · ·	· · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	•	· · ·		•	· · · · · · · · · · · · · · · · · · ·	•	•	· · ·	· · · · · · · · · · · · · · · · · · ·	
· · ·	•	•	· · · · · · · · · · · · · · · · · · ·	· · ·			· · · · · · · · · · · · · · · · · · ·	• • • •	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	•	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	•		· · · · · · · · · · · · · · · · · · ·		· · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · ·		•	· · · · · · · · · · · · · · · · · · ·		•	· · ·	· · · · · · · · · · · · · · · · · · ·	
· · ·	•	· · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · ·	· · ·	• • • • •	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	•	· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·	•		· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·	
· · · ·	•		· · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·		· · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	•	· · · · · · · · · · · · · · · · · · ·						•		· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · ·				· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·	
· · ·			· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·		• • • • • • •		· · · · · · · · · · · · · · · · · · ·							· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·						· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·	

HW 4 now dre 11/15	15.5 - 15,7
HW 5 Now dre 11/15	<pre></pre>
P-P Chain	
4 'H -> 4He + 8	Trore > lo million K
	= 15 million K
	Tsurf = 5700 K
How to we go from	high energy 8-cays
@ 15 million K Lo	visible light @ ~ 6000 K?
convection	radiatio~

random walk	
	mean free path L
e_{11}	number of steps N
e_3 e_5 e_{12} e_9 B	$d = L \sqrt{N^{1}}$
e_4 e_2 e_6 e_8	$N = \left(\frac{d}{L}\right)^{2}$
ℓ_7	$L = 10^{-3} m$
16 14 14 12 12 15 10 1.5 10 1.5 10 1.5 10 1.5 10 1.0 1.5 10 1.0 1.5	$d = R_{SUN} = 7 \times 10^{5} \text{ km}$ N = 10 ²²
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}{}\\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$	t = 50,000 Years

convecti - hot	jun juses	risiny1	اه چا	945E2	falli	ng	
-bulk	motis	n of l	(cells"	of	94 s		· · · · · · · ·
- net	energy	transport	ot e	nergy	Fron	bottom	Lo top
~ <u>1</u> 0	rct 1	er ans polt	•	Mass	· · · · · ·	· · · · · · · ·	
		Cool, dark sinking gas		Hot, bright rising gas			
· · · · · · · · · · · ·	· · · · · · · · · ·	108.		C. C	· · · · · ·	· · · · · · · ·	· · · · · · · ·
	· · · · · · · · · ·	0.71480		X Cont	· · · · · ·	· · · · · · · ·	· · · · · · · ·
· · · · · · · · · · · ·	· · · · · · · · ·	38		in the second second	· · · · · ·		· · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · ·	Aveil real	ear stions		· · · · · ·	· · · · · · · ·	· · · · · · · · ·

Opacit	7 (opaque))	· · · · · · ·	· · · ·	· · · ·	· · · · ·	· · ·	· · ·
· · · · · · · · ·	nean free	- path	depends	01	· · · ·	· · ·	· · · · ·	· · ·	• • •
· · · · · · · ·	- 2		light		· · · · ·	· · ·	· · · · ·	· · ·	· · ·
· · · · · · · ·		ensity	· · · · · · · · · · ·	· · · · · · ·	· · · ·	· · ·	· · · · ·	· · ·	· · ·
· · · · · · · ·	- +	emperatu	۶1 L		· · · · ·	· · ·		· · ·	· · ·
· · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	on iz atio	n / excita	tion st	ates	0 0 (F	aton	∿3° 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000	
inder	regions	dense,	high T	high	ionia	zatio,	n 51	hort	
refu	د دي ت مم	low densit	y low Ty	(0.~	$(\circ \gamma)$	22+1	3 	$l \cdot n_{\sigma}$	γ λ h h h h h h h h h h h h h
· · · · · · · · ·	· · · · · · · · · ·		· · · · · · · · · · ·	· · · · · · ·	· · · · ·	· · ·	· · · · ·	· · ·	· · ·
	Opacit r inner o-tor	Opacit-1 mean free - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	Opacity Lopaque mean free path - λ of - density - temperatu - ionization inner regions dense, o-tor regions low dunit	Opacity (opaque) mean free path depends - λ of light - density - temperature - ionization (excitation inner regions dease, high T ₁ outer regions low density, low T ₁	Opacity (opaque) mean free path depends on - λ of light - density - temperature - isnization (excitation st inner regions dense; high T, high outer regions low durity; low T, low	Opacity (opaque) mean free path depends on - λ of light - density - temperature - ionization (excitation states inner regions dense, high T, high ioniz ofter regions low density, low T, low ion	Opacity (opaque) mean free path depends on - λ of light - density - temporature - isnization (excitation states of inner regions dense; high T; high ionization outer regions low durity; low T; low ionization	Opacity (opaque) mean tree path depends on - h of light - density - temperature - isnization (excitation states of atom inner regions dense, high T, high ionization, sh orter regions low durity, low T, low ionization,	Opacity (opaque) mean free path depends on - λ of light - density - temperature - ionization (excitation states of atoms inner regions dense, high T, high ionization, short outer regions low lumity, low T, low ionization, long

when opacity is very high, carry is more efficiently transported by convection Coparity radiation $dT = \frac{3pCr}{64\pi} K(r)L(r)$ $dr = \frac{64\pi}{64\pi} \frac{5}{58}Tcr^{3}r^{2}$ convection $dT = (1 - \frac{1}{3}) \frac{T(r)}{P(r)} \frac{dP}{dr}$ R adiabatic index

$ \begin{array}{c} \mathcal{L} \\ A \\ \bullet \\ \bullet$	
A = area of cylinder L = length c = houthers	$rac{1}{a} = \pi r^2$
r = size of absorbers n = number density of absorbers V = 1. A	. .
N = nLA frontion $\sigma_{tot} = nLA \sigma_a$ Fabs = σ_{tot}	$\frac{\mu_{optical} \text{ depth}''}{1 + \sigma_{a}} = \pi h \sigma_{a} = \pi$

Small T " optically thin " "optically thick" large t dL -> Lout Iin -> dI KI T $dI = -(I)(n\sigma dL) = -IdT$ $\frac{dI}{I} = -dT \qquad \int_{T_{in}}^{T_{out}} \frac{dI}{I} = -\int_{0}^{T} dT$

Stellar Evolution	
energy production (fu	$(i \circ \gamma)$
energy transport Cradi	ation, consection) opacity
gravity radiation pressure 7 hydro	static equilibrium $\frac{dP}{dr} = -p(r)g(r)$
equation of state P	$V = 15 K T = \mu M H$
chemical composition X H 0.7	(mean mdecluar weight
y He 0.28	MASS is the
2 "metals" 0.02	Most important determining factor

10000	" period of a stars life
Mas	when it fuses I H to He
L Segura	in the core "
· · · · · · · · · · · · · · · · · · ·	D=pkT core
0,00	
not Tsoff	(o o l
· · · · · · · · · · · · · · · · · · ·	what changes do we expect to
	see as H -7 He?
	energy almostion rate
	$\mathcal{C}_{pp} \sim T^{\prime}$
	· · · · · · · · · · · · · · · · · · ·

•	•	•	•	•	· · ·	Ļ	-	· (1 · ·	•	Ч	Π	ŕ	2	2	Ċ)) 		Tsu		fac	<u>د</u>	•	•	· · ·	•	· · ·	•	· · ·	•	· ·	•	· · ·	•	•	· ·	•	•	· ·	· ·	•	· · ·	· · ·
•	•	•	•	•	· ·	•	•		•	• • •	•	•	•	4		n N	0 6	· · · · · · · · · · · · · · · · · · ·		•	:/: :/: :	4	X	L		• • • •	† 1	a		· · ·	•	· · ·	•	•	· ·	0	•		· ·	•	· ·)
•	•	•	•	•	· ·		•	•	•	· · ·		n M	, 0	י י י ר		•	5	ey		L		د د و		· ·	 (-	fe	λı	~. ~.	•	· ·	•	· ·	•	•	· ·	•	•	•	· ·	•	• •	· ·
•	•	•	•	•	· · ·	•	•	•		· ·	•	•	•	· · ·	•	•	1	- ~	ر ب	•	2	· · · ·	- N	1 N	Ĺ,	ہ م م	•	1 .	•	l	D		G	٦		•	•	• •		•	· · ·	· ·
•	•	•	•	•	• •	•	•	•	• •	••••	•	•	•	••••	•	•	•	•		•	· ·	•	•	· ·	•	· ·	•	· ·	•	· ·	•	· · ·	•	•	• •	•	•	• •	• •	•	· ·	• •
•	•	•	•	•	• •	•	•	•	• •	· ·	•	•	•	· ·	•	•	•	••••	•	•	· ·	•	•	· ·	•	· ·	•	· ·	•	· ·	•	· · ·	•	•	• •	•	•		••••	•	• •	· ·
•	•	•	•	•	• •	•	•	•	• •	· ·	•	•	•	· ·	•	•	•	• •	•	•	· ·	•	•	· ·	•	· ·	•	· ·	•	· ·	•	· ·	•	•	• •	•	•	• •	• •	•	· ·	· ·
•	•	0	•	•	• •	•	•	•	• •	••••	•	•	•	• •	•	•	•	• •	•	•	• •		•	· ·	•		•	· ·	•				•	•	· ·	•	•		• •	•	• •	•••

	ore contracts -> Trore increases	
R	led Giant Branch	
Red Gianty (10) Red Gianty (10) L 7 (00 LSM 10) T ~ 4000 K 10 R ~ 30-300 RSM 10 10	0^{6} 0^{4} 0^{2} 1 1 0^{-2} 0^{-2} 0^{-4}	<
	40,000 20,000 10,000 5000 2500 Temperature (K)	

degeneracy	pressure keeps core from collapsing
electrons	keep core supported instead thermal pressure
	$P_e \sim \rho^{5l_3}$
helium Flu	sh @ loo million K in lore
triple	alpha process A = Me
· · · · · · · · · · · · · · · · · · ·	He FHE -> Be
· · · · · · · · · · · · · ·	⁸ Be + ⁴ He -> ¹² C + V ² 3a ¹
	12C + YHE -> 160+8
	160 + 4He → 2°Ne +8

release None	10 ⁽¹ Lsun makes it c	all at once (few seconds) out of star
e ll P	the photons ressure, retur	s break electron degeneracy an other to ideal gas
$10^{6} - 10^{4} - 10^{2} - 10^{2} - 10^{-2} - 10^{-2} - 10^{-4} - 40,000 - 20,000$	Horizontal branch Horizontal branch H-core exhaustion 10,000 5000 2500	ranch Helium - burning main sequence = horizontal branch H-rHe (Herc)

what happens when you run out in the core?.	st Helium
core will contract, but supported	by degeneracy pressure
Lore T increases Star sets Sigger, cools down	H ion
H-7 He H-7 He Main sequence H-7 He Main sequence H-core exhaustion H-core	= red supergiants Red giant branch
10 ⁻⁴ – 40,000 20,000 10,000 5000 Temperature (K)	2500

											•																								
																																	• •		
																																	• •		
																																	• •		
																													• •						
																			7										• •						
		•	• •			• •					• •					/			/ /	• •						•	10		• •		• •		• •		
		•	• •			• •					• •				/		/	/.	· ·]						. 1	115	JK-		• •		• •		• •		
		•	• •			• •					• •			./						\ ·					-0	L!			• •		• •		• •		
		•	• •			• •					• •			10	<					\ .			· < ۲	۲۰		•			• •		• •		• •		
						• •					•									- \-		¥.	£ *						• •				• •		
																						0.*	•						• •		• •		• •		
																							•						• •		• •		• •		
			• •			• •					• •								"	• •		\mathbf{i}							• •		• •		• •		-
			• •			• •					• •								1	• •									• •		• •		• •		-
		•	• •		•	• •					• •				•				-1	• •			•	7	+	•			• •		• •		• •		
		•	• •		•	• •					• •				•				- \			1		-)		•			• •		• •		• •		
			• •			• •					• •	1	.7	•	•						/								•		• •		• •		
		•			•						/											1				•			• •		• •		•		-
		•			•		-	Ľ.	i.	. /										K	/		•			•			• •		• •		•		-
		•	• •		. · .	.7	21	12	ŀ		• •				•					<u> </u>			•			•			• •		• •		• •		
		•	• •		bu	<i>5 1</i> .					• •				•					• •			•	~ .		•			• •		• •		•		
		•	• •			• •					• •				•					• •			•	ľ		•			• •		• •		•		
			• •			• •					• •				•					• •			•	• •	<u>\</u> -				•		•		•		-
			• •			• •					• •				•					• •			•		$-\lambda$				•		•		•		-
			• •			• •					• •				•					• •			•			/					•		•		-
			• •			• •					• •				•					• •			•			÷ 1		١Ņ	•		•		•		-
			• •			• •					•									•							•	. •	•				•		
	•		• •			• •					• •									• •								•	• •		• •		• •		
			• •			• •					• •				•					• •			•						• •		• •				
			• •			• •					• •				•					• •			•						• •		• •				

•			 	•		HI	N	•	•	Ч	ł	5	-		E) J	e		•	Ņ	٨	۔ م ک	ð	la	4	•	.	1	(*	5	•		• •	•	•	•	• •	 •	•	•	•	•	• •	• •	•	•	•
•	•				0	l	5	• •		3	•		Ň	٨	د	6-		0	N	د ۱	, le	- <mark>(</mark>	ار	6	~	•	W	ei	sh	. + .	5	•	••••	•	•		• •	 •	•	•	•		• •	· ·	•	•	0
•			 				4	50	e	-	•	•	С	h	. [14	, . 	1	•	•	•	E	e e	•	(L	1.	9	· ·	•	•	•		· ·	•	•	•	· ·	 •	•	•	•	•	• •	· ·	•	•	•
•	•		 	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	Ņ	1 -	-			2	X		+-	· ·	3/4	- 7			<u> </u> 2	•	Z)	: 1 . 	 •	•	•	•	•	• •	••••	•	•	•
•	•		 	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	••••	•	•	•	•	• •	•	•	•	• •	 •	•	•	•	•		•	•	•	•
•	•		 	•	•	•	•	•	•	•	•	•	•	•	•	•	•	0	•	0	•	•	•	0	•	•	•	• •	•	0	•	•	• •	0	•	•	• •	 0	•	•		•	• •	• •	•	•	•
•	•		 	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	••••	•	•	•	•	•••	•	•	•	• •	 •	•	•	•	•	• •	••••	•	•	•
•	•		 	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	••••	•	•	•	•	•••	•	•	•	• •	 •	•	•	•	•	• •	••••	•	•	•
•	•		 			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	• •	•	•	•	• •	 •	•	•	•	•		••••	•	•	•
•	•		 	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•••	•	•	•	•	• •	•	•		• •	 •	•	•	•	•		• •		•	•
•	•		 		•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•	•	•		• •	0	•		• •	 0	•	•	0	•			•	•	•

Mars Mo	ms Lifetime Yrs	why do high mars
	lo billion	stars have such
1.5	1.5 61111	short Ms lifetimes?
3	250 million	increased mass
5	70 million	-> increased P.T.P.
9	Zo million	Fusion rate
15	10 million	CNO eycle carbon, nitrogen, oxeggen
(0 °	(ასე მალი ის იკი მალი ის	$E_{cNo} \sim T^{2}$
		$E_{PP} \sim TY$

693	$^{12}C + ^{\prime}H \rightarrow ^{13}N + \gamma$	4H - The
· · · · · · · · · · · · · · · · · · ·	$^{13}N \rightarrow ^{13}C + e^{+} + \gamma_{c}$	
· · · · · · · · · · · · · · ·	$^{13}C + ^{1}H \rightarrow ^{14}N + 8$	· · · · · · · · · · · · · · · · · · ·
	14 N t H -> 150 + 8	
	150 -> 15N + e+ + Ve	· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	15N + H → 12C + He	· · · · · · · · · · · · · · · · · · ·
5till	do p-p chain in bac	kground
· ·	3 Mo and up:	· ·

Carbon burning	600 million K		
12C+12C	=) 16 + 4 He + 4 He	· · · · · · · · · ·	· · · · · · · · · ·
	20 Ne + 4He		· · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	23 NQ + Pt = H	· · · · · · · · · ·	· · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	$^{23}Mg + n$	· · · · · · · · · ·	· · · · · · · · · ·
<pre></pre>	24 Mg + V	· · · · · · · · · ·	· · · · · · · · · ·
	Υ	· · · · · · · · · ·	· · · · · · · · · ·
1604 160 =>	$24M_{g} + Hc + Hc$ $28S_{1} + 4Hc$ $31p + H(p^{+})$	· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·	· ·
1 billion K	$315 + n$ $825 + \gamma$	· ·	· · · · · · · · · · ·

Silicon burning 28 si t ⁻²⁸ si -7	^۲ ، FL
3.5 billion K	To surface
lron cannot be fused into	He rich Hydrogen burning
neavier elements!	C rich Helium burning O rich Carbon burning
12 WO H (O WYL MHY IS MAL	Si rich Silicon burning
He I Myr C 300 Yr	Iron core Supported by degeneracy pressure
o 200 days Si 2 days	$t \sim 8$ billion K $P \sim 10^{6}$ g/cm ³

photo dissociat	· 					
	56 + y -> 13 4He + 41					
	4He+8 -> 2p+21					
	$p^{+} + e^{-} \rightarrow n + \nu_{c}$					
. .	core collapses					
Ea	th sized core -> 50 km					
а А	+ 10 g/cm3					
· · · · · · · · · · · · · · · · · · ·						
· · · · · ·	collapse	stops	w]	neutron	degeneracy	
-------------	----------------	---	-------------	---------------------	-----------------------------------	---------------------------------------
 	 		 	· · · · · · · · ·	pressure	· · · · · · · ·
· · · · · ·	<u>β</u> ων κα	el 5 017		· · · · · · · · · ·		· · · · · · ·
· · · · · ·	Star	explodes	· · · · · ·	· · · · · · · · · ·	· · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
Su	pernosa	· · · · · · · · · · · · ·	· · · · · ·	· · · · · · · · · ·	· · · · · · · · · · · · · · · ·	· · · · · · · ·
· · · · · ·		a Lsun	er	beak br	isht acss	
· · · · · ·		(00 k (0	1 L su	n in	neu trinos	
 		. .	 	· · · · · · · · · ·	· · · · · · · · · · · · · · ·	· · · · · · · ·

· · · · · · · · · · · · · · · · · · ·	Neutron capture reactions $A = X + N \rightarrow A + 1 + + Y$							· · · · · · · · · · · · · · · · · · ·	S-process capid process																													
· · · · · · · · · · · · · · · · · · ·	•	bч	بر لم	а а а а	1	λ		1 1 1 1 1 1	- +	- (A						· · · · · · · · · · · · · · · · · · ·		-	· · · · · · · · · · · · · · · · · · ·		v				8				•	· · · · · · · · · · · · · · · · · · ·	•	•	· · · · · · · · · · · · · · · · · · ·
	•	• •	•	• •			• •		• •	7	-	• •	 •		Z	27	- 1		0	•	• •	•	•	• •	0	• •			•	0					• •		•	• •
• •	•	• •		• •			• •	 •	• •			• •			• •		•	• •		•	• •	•	•	• •	•	• •		• •	•	•	• •	•	•	•	• •	•		• •
• •		• •		• •			• •		• •			• •		•	• •			• •			• •			• •		• •					• •							• •
• •		• •		• •			• •	•	• •			• •			• •			• •			• •			• •		• •		• •			• •		•		• •	•		• •
																				•			•															
				• •								• •			• •			• •								• •									• •			
• •		• •		• •			• •		• •			• •			• •			• •			• •					• •		• •			• •				• •			• •
• •		• •		• •			• •		• •			• •			• •			• •			• •			• •		• •		• •			• •				• •		•	• •
		• •		• •			• •		• •			• •			• •			• •			• •					• •		• •			• •	•			• •			• •

H Bang fusion Bang stars Bars						ing 'e	H N	lumar Io stal	n synt ble iso	hesis otopes	5		He					
	Li	Be	Cosmic			N	Merging Exploding				B 5	C 6	N 7	0 8	F 9	Ne 10		
•	Na 11	Mg 12		ray fiss	ion	s	tars	n	w d	/hite warfs			AI 13	Si 14	P 15	S 16	CI 17	Ar 18
	K 19	Ca 20	Sc 21	Ti 22	V 23	Cr 24	Mn 25	Fe 26	Co 27	Ni 28	Cu 29	Zn 30	Ga ³¹	Ge 32	As 33	Se 34	Br 35	Kr 36
•	Rb 37	Sr 38	Y 39	Zr 40	Nb 41	Mo 42	Tc 43	Ru	Rh 45	Pd 46	Ag 47	Cd 48	In 49	Sn 50	Sb 51	Te 52	 53	Xe 54
•	Cs 55	Ba	~	Hf 72	Ta 73	W 74	Re 75	Os 76	lr 77	Pt 78	Au 79	Hg 80	TI 81	Pb 82	Bi 83	Po 84	At 85	Rn 86
	Fr	Ra	∽					-		NAME SOOR		NAME OF COST			NAME AND ADDRESS OF	NAMES AND ADDRESS OF		
	87	88		La 57	Ce 58	Pr 59	Nd 60	Pm 61	52 Sm	Eu 63	Gd 64	1 b 65	Dy 66	H0 67	Er 68	1 m 69	Yb 70	Lu 71
•				Ac 89	Th 90	Pa 91	U 92	Np 93	Pu 94	Am 95	Cm	Bk 97	Cf 98	Es ₉₉	Fm 100	Md 101	No 102	Lr 103

56 Nì→ Zð	r_{27}^{56} Co + e ^t + V_{e} + χ	6,1 days
56 27 ℃0 →	56 Fe + et + Ve + 8 26	77.7 days
		. .
Pullyting	Type 19	
	010 t 60	120

Neutron Star	
$mass \sim 1.7 - 3 M_{\odot}$	
radius 10-15 km	
density 6×1014 g/cm ³	$M = 15M_{\odot}$
Vesc ~0.6 c	$R \approx 10 \text{ km}$ (a) (b)
orter crust	Outer crust
Fe neutron rich isotopes, electrons	Inner crust
elements, ne-tron superfluid	Interior 9.2 th
	Core ? •

Magnetic	fiud				
BEarth	- 0.5 4	a-s;		 	
Bson	= -10	Gauss	· · · · · · · · · ·	 	· · · · · · · · · · · · · ·
BNS	- 10 ¹⁴ G	Q~5J		· · · · · · · · ·	
temp~	lo K	-> 10	6 K		
Synchrotron	n radiatio	▲	· · · · · · · · · ·	· · · · · · · · · ·	. .
acceler	majnetic fie	charged p Id lines	articles ar	ornd	
· · · · · · · · · · · ·	Blackbo	dy Curve	peaks in	X-ray	· · · · · · · · · · · · ·

• •			••••	• •	Pc	lsars	· · · · ·	· · ·	
• •	Spin axis		• •	• •	pe	riods	0.	25 -	- 2 second
· ·		Radiation beam	••••	• •	· ·	· · · · · ·	· · · · ·	· · ·	· · · · · · · ·
			• •	• •	· ·	· · · · · ·	· · · · ·	· · ·	· · · · · · ·
•	Magneti	ic field	• •	• •	· ·	· · · · · ·	· · · · ·	· · ·	· · · · · · ·
	Ŧ		• •	• •	• •	· · · · · ·	· · · · ·		· · · · · · ·
		•	• •	• •	• •				
• •			· ·	• •	• •	· · · · · ·	· · · ·		· · · · · · ·
		· · · · · · · · · · ·	• •	• •	• •		· · · · ·		· · · · · · ·
			• •	• •	• •		• • • •	• • •	
		· · · · · · · · · · ·	· ·			· · · · · ·	· · · ·		

Black Holes	Mass 3-10 Msun
	$\sum_{i=1}^{n} p_i(n) = \sum_{i=1}^{n} p_i(n) = \sum_{i=1}$
	electric chage
	· · · · · · · · · · · · · · · · · · ·
	SIZE SIZE SIZE SIZE SA
	$N_{\rm eff} = \frac{2 \text{GM}}{2 \text{GM}} = C^2$
	R.
	R = 2GM and $R = 12GM$
	Schwarzschild Radios

white Overfs	
leftour cores at sun-like stars	
C & O, He	
M - 1M5JA	· · · · · · · · · · · · · · · · · · ·
$L = 0.03 L_{SUN} \qquad L = 4\pi R^2 \sigma$	T.4
T~ 27,000 K	
R~ 0,008 RSUN~ REATH	
P~ 3×100 g/cms	· · · · · · · · · · · · · · · · · · ·
Matimum Mc55 - 1,44 Mo	chandrasekhar Limit

<mark> </mark>	<u>.</u>
a second seco	
	Makerical
	μαγείαι ίλ
	accretion drak
	undergoes spontaneous
	H-> H. f.
 A set of the set of	
	A A A A A A A A A A A A A A A A A A A
· · · · · · · · · · · · · · · · · · ·	•
and a second	a a segura da a cara da segura da segura de la cara de para de la cara de la cara de la cara de la cara de la c
and a set of Bar Wisson and Carbon 1 and	inning Fer - boom's
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
L > l	0 45vg
	· · · · · · · · · · · · · · · · · · ·
thornal	$5 (\Omega \rho c h \rho c)$
(received) your away	

Interstella	r Medium			· · · · · · · · ·		•
"storf	between the	_ stas "				•
hydrosen	- 2 °		· · · · · ·			•
helium	~24 0	· · · · · · · · · ·	· · · · · ·	· · · · · · · · ·	· · · · · · · · · · · · · ·	•
molecular sa duit	> 25 7 ~ 19		· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · <td< th=""><th></th><th>· ·</th><th>•</th></td<>		· ·	•
neutral	hydrogen	(HI)	1005	of Kelui'	7	•
ionized teau molecula-	hydrogen for recent hydrogen	(HTI) star Format (H2)	(000) tion Lo 's	5 of K	Balme line enission spute	
						•

Neu	tral hy	drozen		
· · · · · ·	mostly	in ground	state	· · · · · · · · · · · · · · · · · · ·
· · · · · ·		true ground	state is	up ldown
· · · · · ·	· · · · · · · · · · ·	up lup or	down (down	have a
· · · · · ·		little extr	n energy	E = hc
· · · · · ·	· · · · · · · · · · ·	$\Delta E = 6 \kappa$	10 ⁻⁶ eV	λ
· · · · · ·	· · · · · · · · · ·	· · · · · · · · · · · · · · · · · ·	$\lambda = 2($	CM (radio)
· · · · · ·				· · · · · · · · · · · · · · · · · · ·
· · · · · ·	· · · · · · · · · · · ·	· ·	· · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·

Molecula Hydr	osen	· · · · · · · · · · · · · · · ·	
Co (2.4	mm) emit.	s at 2.6 mm	T /
dust	· · · · · · · · · · ·	· · · · · · · · · · · · · · · · · ·	
HCN		HI cloud	molectar cloud Core
NH3	Temp	50K	150 (<
" molecular clouds"	Denstry	500 #lcn-3	107 # (cm 3
	Masj	1-100 Mo	10-1000 M.
(H)	· · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
HI			· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · ·	· · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·

Virial	Thorem	
· · · · · · · · · · · · · · · · · · ·	$z + \upsilon = 0$ $E = \frac{1}{2} U$	
· ·	$K = \frac{1}{2} J$	NC M total
. 	$K = N\left(\frac{3}{2}kT\right)$	N- m particle mass (3N) (13
	$U = -\frac{3}{5} \frac{Gm^2}{R}$	$K = (\overline{\mathcal{U}_{\pi\rho}})$
. 	$SNKT < \frac{3}{5} Gm^2$	
· ·	$M > \left(\frac{5 kT}{Gm}\right)^{3/2} \left(\frac{3}{4\pi\rho}\right)^{1/2}$	Jeans Mass
	7 partikle	

	when you exceed limit
	(part) of the cloud can collapse
(so thermal	collapse - "same temperature"
c(ou人 ()	s optically thin, heat radiates away
\mathbb{R}^{1}	log free-fall time
	$a = \frac{q_{m(r)}}{r^2} r = \frac{1}{2}at_{ff}^2$
	$-\frac{4\pi G^{2} \rho}{3}$
	$t_{ff} \sim \sqrt{t_{ff}}$

$t_{f+} = \int \frac{1}{4\rho}$	M~ 5-	Ę	
Fragmenting	big (loud	into sma	11ec
pieces	that each	collapse	independently
into	a star		
Smalle)F			
even fuelly	(loud 15	tos opal	que
adiabatic	collapse -	9 higher T	-> hisher p
	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·

h & X Persei blue

differences '

not dense irregular shapes M13 stars More red red gionts?, denser distribution spherical

open clusters	globular clusters
bluer, younger stars	cool, red stars
Low densities	old 13-14 billion years
~looo stars	high density
10-100 million yers old	100,000 stars
found in arlas of recent star formation	mainsequence, red grant stars
fornd in disks of spiral galaxies	found around galaxity of all types

Galilean Satellites of Jupiter (1610)	kg/m ³
x Earth moon Mass Radius Density	lron ~7000
10 1.2 1.1 3500 kg/13	Rock ~ 3000
Europa 0.65 0.9 3000	Hz0 ice ~ 1000
Gaymide 2.0 1.5 1900 Callisto 1.5 1.4 1800	SPENIN ~ 5500

references mentioned in text)

in text)

Second largest	M	0 0 へ 0 0 0 へ 0	• •	•	• •	0
surface pres	55VC+			•	• •	0
i.r atm	· · · · ·			0	• •	
· · · · · · · · · · · · · · · ·	· · · · ·	· · ·	••••	•	••••	•
other Organics	· · · · ·	· · ·	•••	0	• •	
94 K		••••		0	• •	
ple point K		in the second	63			
	1757	G	2			
	Second largest surface pres i.s atm ther organics 94 K ple point k	Second largest Ma surface pressure i.s atm ther Organics 94 K ple point	Second largest Moon surface pressure i.s atm ther Organics 94 K ple point	Second largest Moon surface pressure i.s atm ther Organics 94 K ple point k	Second largest Moon surface pressure i.s atm ther organics 94 K ple point	Second largest Moon surface pressure i.s atm the Organics 94 K ple point k

Arone mission launch 2027

N(R) & 1/	R ² Size	distribution		lda
biggest =	Ceres 900	kn		Dact
only 26	bisser than	200 KN		
· · · · · · · · · · ·	· · · · · · · · · · · · ·	· · · · · · · · · · · ·	60 km	20 km
· · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	
material u	was never a	ble to for	n a plan	et
material u add up	to less the	ble to for m muss o	m a plan t Earth's	ct Mosa
material u add up	to less the	ble to for m muss o	n a plan t Earth's	ct Moon
material u add up l	to less the $0 - 30^{\circ} l_{0}$ of	ble to for m muss o asteroids	n a plan t Earth's have moons "satellite	et M • 5 ~

Comets "Dirty Space Snowballs" highly elliptic	cal orbits e>0.9
-mostly water ice	
ammonia Silicates (dust) Organic material	Comet NEOWISE
Nucleus ~ a few km Coma heated cloud of gas/dust	
Tail N a few million Km long ion tail solar wind, magnetic field lines dust tail trailing particles pushed by radiated	Von DRESSIR

.

Radiation Pressure Dust tail photons Can Dust tail CARRY • Sun Ion tail momentum Comet's orbit Ion tail Luminosity $F = \frac{dP}{dt} = \frac{1}{c} \frac{dE}{dt}$ consider a shell of radius R pressure = force/area = L dE C dt/ymR distance from Sur

what are rings?

ice p	micles!	
sizes	between	· · · · · · · · ·
· · · · · · · · ·	1 cm l	3 m
	*	
0		
only a "fe me	w dozen' ters thic	" = 30 m K
gaps come	from o	rbital
resonances	"shepherd	Mosas

Kuiper Belt Objects outsi	ide of Neptune's orbit
Pluto and Friends	dwarf planet
rock and ice combined	Oort cloud (spherical)
charon	source of comets
Pluto	
plu	his atmosphere

Earth's	Atmosphere	pressure gradient follows
70 by	#	ideal say Law + hydrostatic
780	N_{z}	$P(r) = P_0 e^{-\frac{r-R_0}{H}}$
	Ar	$P_0 = sec level = latm = 10^{5} N/m^2$
0.04 %	Coz	$R_{o} = radiu = 6378 \text{ km}$
		H = scale height = <u>kT</u> (A drops to 372) <u>JMM</u> P
· · · · · · · · · · · ·	. .	= 8 km ~ Mt Everest
· · · · · · · · · · · ·	· · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·

	120 100			Thermosphere -h.+	+ ionosphere
Altitude (km)	80 60			Mesosphere - mi'dd le	not much going on
ł	40 20			Stratosphere = layers	absorbs UV light
	0	200	250 Temperature (K)	Troposphere - Hurainy 300	Convection = weather 350 most of material ~ 80%

· · · · · · · · · · · · · · · · ·	Supiter	Saturn	Uranus	Nepture
Radius ~70,000 k	~ t	0.85	0,36	0.35
Mass ~ 1x1027 k	-γ	0.3	0.045	0,053
Density Hz0 = 1,000	1,330 kg/m3	690 48/m3	1270 kg/m3	1640 holm 3
Distance From Sun	5.2 AU	9, 5 AJ	19.2 AU	30.1 AU
Teg	110 K	80 K	60 K	45 K
Taba	125 K	95 K	60 K	60 K
	cloud natterns	cloud patterny	Featuriless	cloud patterns
vot.e.s		ciers	tiny Mays	"arclets"
	Think ings	50 f moons	to t moons	20 t moon
· · · · · · · · · · · · · · · · · ·	$t_{rot} = 10 hc$	$t_{rot} = 10.6$	trot = 17 3 axis filt ~ 9	hr trot = 14.2 has

Jupiter

Atmosphere Composition Hydrogen, Heliv Ammonia (NH3), Methane (CH4) Ammonia Hydrosulfide (NH4 HS)

bright "zones"= gas moving 7, see cool top darke "bands"= gas moving b, dadher inter happens es = convection bands

shear between cloud bands causes cyclonic storms

polar hexagon!

composition

H, He, methane, ammonia, water ice

viteo

Uranus

color differences due to molecular differences T, us light -> annonia, multime, etc yullow blue red

Neptune

great dark spot

Equilibrium Temperature ability to retain heat after presence of atmosphere green	Te	e = by	T*(-	$\frac{R}{2a}\left(1-A_{B}\right)^{1/4}$	R	a = semimajor axis = star radius = star temp
Habitable Zone				Temperature	. A.	B = "albedo" => Z lisht
range of orbits around	0K 50K	100 K 150 K	200 K 250 K	300 k 350 k 400 k 450 k 500 k 550 k 600 k XI (hexagonal) X	10 Mbar	reflected
a star within which	10 GPa			VII	100 kbar	
a planetary surface	1 GPa XV 1X 100 MPa	218 248.85 K 238.5 K	K, 620 MPa 344.3 MPa 99 22 212.9 MPa 25	278 K, 21 GPa 355.00 K, 2.216 GPa 272.99 K, 632.4 MPa 36.164 K, 350.1 MPa 1.165 K, 209.9 MPa Critical point	10 kbar 1 kbar	· · · · · · · · · ·
can support liquid water	10 MPa	olid		Liquid 647 K, 22.064 MPP	100 bar Venus	· · · · · · · · · ·
given sufficient	1 MPa 100 kPa (ortho-	I _C	lh int at 1 atm	Earth at sea level	-10 bar -1 bar	
atmospheric pressure	10 kPa	-) 2/3.13 K	, 101.323 KPa	Equatorial Mars	100 mbar 10 mbar	· · · · · · · · · · ·
	100 Pa			Solid/Liquid/Vapour triple point 273.16 K, 611.73 Pa Vapour	1 mbar	
· · · · · · · · · · · · · · · · · · ·	10 Pa 1 Pa -250 °C -2	00°C -150°C -10	0°C -50°C 0°	c 50 °C 100 °C 150 °C 200 °C 250 °C 300 °C 350 °	100 µbar 10 µbar	· · · · · · · · · ·

Kaltenegger L. 2017. Annu. Rev. Astron. Astrophys. 55:433–85

-	T	7	بو	•	•	Ţ	>,	-0	a	6	2		E	9	v	a	4	10	1	•	•	•	•	•	•	•	•	•	•	•	•	
	•	•	2	50		X	J.		•	1	9	Ĺ	Ĺ	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1	
	•	•	•	•	•	•	•	•	•	6	י הה	•	- с	: 	. In	مەر	•	•	Ca	د ب	i	•	•	•	•	•	•	•	•	•	•	
													- 7).°	. •											1
																																•
									•				•		•	•	•	•				•				•	•	•				
									•				•		•	•	•	•				•				•	•	•				

 $N = R_{f} n_{e} f_{f} f_{e} f_{e}$

· · · · · ·	β	R*	5 p	ne	fL	fi	f	<u> </u>
ι,	-19 10	· · · · · · ·	0.1	10-2	10-6	(°-4	10 ⁻¹⁰	اه ۲
2,	10-9	· · · · · · · · · · · · · · · · · · ·	0.1	0,1	0_00(0.001	0.000 f	5000
3,	-9 1 D		0.1	1.5	0.01	10-6	0.000(6003
	10-4	· · · · · · · · · · · · · · · · · · ·	0.1	Ч	0.0((0	- 7	50,000
	10-6	· · · · · · ·	0.1	3	1/3	0,19	5×15-7	200
5.	10-9	· · · · · · · · · · · · · · · · · · ·	0,1	2	1	$\frac{1}{10}$	1/50	2000 500
Ray	0.002		0. (2				1000