Planets foll 2021

MW 12:45-2:00 Sears Library 552

ASTR 221 - Stars and Planets

Time:	Mondays \& Wednesdays, 12:45 pm - 2:00 pm
Place:	Sears Library 552 (the "Astronomy Classroom")
Instructor:	Bill Janesh bfj2@case.edu $\underline{T A:}$ Ray Garner
Course Webpage:	http://astroweb.case.edu/bjanesh/astr221/ \& Canvas for announcements and grades
Required Text:	Foundations of Astrophysics, by Ryden and Peterson (ISBN 978-1-108-83195-6)
Other Useful Books:	Astronomy: A Physical Perspective, 2e, by Kutner
	Introduction to Modern Astrophysics, $2 e$, by Carroll and Ostlie

Grades: Homework: 45% We will use the CWRU Standard Grading Scheme
Midterm: $\quad \mathbf{2 5 \%} \quad(A \geq 90 \%|B \geq 80 \%| C \geq 70 \%|D \geq 60 \%|$ etc. $)$
Final Exam: 30\%
Course Description: Stellar structure and energy production. Formation and evolution of stars. Supernovae, neutron stars, and black holes. Star clusters. Planetary systems and the detection of extrasolar planets. The application of physical laws to the study of the universe.

Disability Accommodations: In accordance with federal law, if you have a documented disability, you may be eligible to request accommodations from Disability Resources. In order to be considered for accommodations you must first register with the Disability Resources office. Please contact their office at 216.368 .5230 to register or get more information on how to begin the process. Keep in mind that accommodations are not retroactive.
Homework: There will be a total of 6 homework assignments. Collaborative discussion is permitted and encouraged, but each person must turn in their own solutions with unique writeup/analysis. Collaborative means talking with each other about approaches, techniques, etc., and not swapping final solutions to copy! Submissions will be accepted on paper or in PDF format via Canvas. Write-ups should be typed or neatly handwritten. For PDF submissions, scan your handwritten work properly (see homework tips page for suggestions) and please make an effort to merge all parts into a single file for submission. Homework will generally be due in class but see each assignment for specifics.

Exams: There will be one midterm and one final exam. You are allowed one sheet of letter/A4-sized paper with notes on both sides, but exam questions will ask you to synthesize information from what you know, not just work a problem or cite facts. You may not work collaboratively with your classmates, and I'll only answer clarifying or format questions. The final exam is scheduled for $12 / 15$ from $12-3 \mathrm{pm}$, please register any time conflicts with Undergraduate Studies. Academic integrity violations during an exam will result in, at minimum, the failure of the exam.
Attendance/Late Policy: Attendance: you are encouraged, but not required, to attend lectures. I will be recording class audio, which will be posted on the course webpage along with slides and notes. Late work: You get one free no excuse late homework (up to one week). All other late work loses 20% per day. If you have an emergency or otherwise legitimate reason out of your control for missing a homework due date (illness, technology issues, etc.), please document this with your Navigator and me ASAP. We'll then work out an alternate due date without penalty.
Computing: Some HW assignments will require you to write and run code in Python to solve astronomical problems. Don't worry - we'll spend at least one class getting more familiar with Python before I ask you to use it, but ask for help if you need it. Typed reports can easily be created using a Jupyter notebook, showing formatted text alongside code and math. If you would like access to departmental computing resources, or have questions or concerns about this aspect of the course, please let me know as soon as possible.
Office Hours: Mondays and Wednesdays the hour after class ends, and a 90 minute block on Thursday decided by class popular vote, or just drop in! Some questions can probably be answered via email; I will do my best to respond as soon as possible during normal business hours. If you have a question in person, please come prepared - for homework questions, you must attempt the problem on your own first! I will ask you to show me what you've tried before I answer questions. If you're not sure where to start, see the homework tips page.
Ray-Tues: 10-11 fri 2-3

Date		General Topic	Ryden \＆Peterson Readings	Due
$\stackrel{\rightharpoonup}{\mathbf{v}}$	Aug 23	Introductions；Orbits and Kepler＇s Laws	2．3，2．5， 3.1	
	Aug 25	Orbits and Kepler＇s Laws；Gravity；Tides	3．1－3．4，4．2， 4.3	
	Aug 30	The Sky；Constellations	1．3－1．6，2．1， 2.2	
	Sept 1	Celestial Sphere；Coordinate Systems	1．1， 1.2	
$\begin{aligned} & \text { 若 } \\ & \stackrel{y}{3} \end{aligned}$	Sept 6	Labor Day（no class）		
	Sept 8	Light；Radiation；Blackbodies；Spectra	5．1－5．7	HW1
$\begin{gathered} + \\ \text { 瞢 } \end{gathered}$	Sept 13	Astronomical Techniques；Telescopes	6．1－6．7	
	Sept 15	Python Introduction	bring a computer！	
	Sept 20	The Sun；Hydrostatic Equilibrium	7．1－7．3， 14.1	
	Sept 22	Distances，Magnitudes，Colors	13．1－13．2	HW2
$\begin{gathered} \ddot{\circ} \\ \stackrel{y}{*} \\ \stackrel{y}{3} \end{gathered}$	Sept 27	Spectral Types；The H－R Diagram	13．3－13．6，14．2－14．4	
	Sept 29	Velocities；Binary Stars；Stellar Masses	13.5	
$\begin{aligned} & \hat{4} \\ & \text { 簤 } \end{aligned}$	Oct 4	Nuclear Fusion；Energy Transport in Stars	15．1－15．4	
	Oct 6	Low Mass Stellar Evolution	17.2	HW3
$$	Oct 11	Review！		
	Oct 13	Midterm Exam	don＇t forget your notes sheet！	
$\begin{gathered} 0 \\ \stackrel{y}{4} \\ \hline \end{gathered}$	Oct 18	Fall Break（no class）		
	Oct 20	High Mass Stellar Evolution；Supernovae	17.3	
爯	Oct 25	White Dwarfs，Neutron Stars，Black Holes	18．1－18．4	
	Oct 27	Star Clusters	14．2－14．4，17．2，17．3	HW4
羅	Nov 1	Interstellar Medium；Star Formation	16．1－16．3， 17.1	
	Nov 3	Star Formation	17.1	
	Nov 8	Solar System Formation	8．1－8．3， 12.2	
	Nov 10	The Earth and Moon	9．1－9．5	HW5
鲎	Nov 15	Rocky Planets；Interior Processes	10.1	
	Nov 17	Moons；Comets；Asteroids；Tiny Things	11．1－11．4	
蔝	Nov 22	Atmospheres；Gas Giants	10．2－10．3， 9.2	
	Nov 24	Gas Giants	10．2－10．3	
意	Nov 29	Exoplanets	12．3－12．4	
	Dec 1	Exoplanets	12．3－12．4	HW6
	Dec 15	Final Exam 12－3pm	don＇t forget your not	sheet！

8123 Orbits \& Kepler's Laws
How did astronomy become a thing? Navigation, tine, seasons, religion What's that stuff in the sky? Gravity
why an 1 here?

Geocentric Model

simplify?

Heliocentric Model

Sun Mercury Venus Earth Moors Jupiter Sateen

Kepler's I st Law
planets orbit in ellipses, with the Eon at one focus of th ellipse

a semi-major axis
b semi-minor axis
e ellipticityleccentricity

$$
\begin{aligned}
& =\sqrt{1-\left(\frac{b}{a}\right)^{2}} \\
& e=0 \quad \text { circle } \\
& e=1 \text { straisttlin }
\end{aligned}
$$

periaple (closest approach to star)
perihelion
perigee $\quad r_{p}=a(1-e)$
periastron
perigalactico-
apo apse (furthest)
aphelion
apogee $\quad r_{a}=a(1+e)$
apo aston

$$
e_{E a r t h}=0,017
$$

Astronomical Unit (AU)
"mean distance between Earth of Sun" 150 million km 93 million miles
semi-major axis of Ecth's orbit

$$
a=1.0 \mathrm{AJ}
$$

Mercury	a	e	P
Menus	0.39	0.205	0.24 years
Earth	0.72	0.007	0.62
Mars	1.0	0.017	1.0
Jupiter	1.52	0.093	1.88
Saturn	5.20	0.048	11.86
Uranus	9.54	0.054	29.45
Neptune	19.19	0.047	164.02
Pluto	30.07	0.009	247.9
Comets	39.45	0.250	varies

Kepler's BedLam
"for all planets, the orbital period squared divided by the semi-major axis cubed is constant."

$$
p^{2} \alpha k_{a} 3
$$

years AO

Kepler's End Law
The Lav of Equal areas
"The line connecting a placet it he Sun sweeps out equal areas in equal amounts of time".
planets move
faster intleirorbits when ley re
clover to the Sun

Kepler's lIst Law Revisited
The Earth does not orbit the Sun. (?) Each object moves on an ellipse w/ COM at one focus of the ellipse.

Kepler's 2nd Law Revisited

$$
\begin{aligned}
& \vec{L}=m(\vec{r} \times \vec{v}) \\
& \Rightarrow L=m r v_{\theta} \frac{L}{m}=r v_{\theta} \\
& \frac{\frac{d A}{d t}=}{} \frac{1}{2} \frac{L}{m}
\end{aligned}
$$

$$
\begin{aligned}
d A & =\frac{1}{2} r(r d \theta) \\
\frac{d A}{d t} & =\frac{1}{2} r\left(r \frac{d \theta}{d t}\right) \\
& =\frac{1}{2} r N_{\theta}
\end{aligned}
$$

Kepler's $3 r d$ Law Revisited

$$
\begin{aligned}
& F_{g}=\frac{G M m}{r^{2}} \quad F_{\text {cant }}=\frac{M N^{2}}{r_{1}} \\
& \frac{G M m}{r^{2}}=\frac{M N^{2}}{r_{1}} \quad N=\frac{2 \pi r}{P} \quad r_{1}=\frac{M}{m+M} r \\
& \frac{G M m}{k_{g} s^{2}} \\
& r^{2}=\frac{M M \pi^{2} r_{1}}{P^{2}} \\
& \frac{G M}{r^{2}}=\frac{4 \pi^{2}}{p^{2}} \frac{M A}{m+M} r \\
& P^{2}=\frac{4 \pi^{2}}{G(M+M)^{2}} r^{3}=a^{3}
\end{aligned} \quad G=4 \pi^{2} \frac{A v^{3}}{M_{\theta} y r^{2}}
$$

Does an orbit have to be an ellipse or a circle?
orbital classification
$\frac{e \text { loped }}{E_{\text {tot }}<0}$

Kinetic a potential
bound
circular, ellipitial

$$
\begin{aligned}
& \text { "Critical" } \\
& \text { Eyot }=0 \\
& \text { kinetic }=\text { potential } \\
& \text { parabolic }
\end{aligned}
$$

Gravitational Potential Energy push it away from the sun

$$
\begin{aligned}
& \Delta U=-\int_{\vec{r}_{i}}^{\vec{r}_{f}} \vec{F} d \vec{r}=-\int_{r_{i}}^{r t} G \frac{M_{m}}{r^{2}} d r \\
& U_{f}-U=-G M_{m}\left(\frac{1}{r_{f}}-\frac{1}{r_{i}}\right) \quad U(\rho)=0 \\
& U=-\frac{G M_{M}}{r} \quad \text { of -critical open } \\
& K=\frac{1}{2} M_{R_{\text {plant }}} V^{2} \quad\left({ }^{\text {loped }}\right.
\end{aligned}
$$

$$
\begin{aligned}
& k+U=\text { constat } \\
E_{\text {tot }}= & \frac{1}{2} M N^{2}-\frac{G m_{m}}{r} \\
0= & \frac{1}{2} m v_{\text {esc }}^{2}-\frac{G M M}{r} \\
& N_{\text {esc }}=\left(\frac{Z G M}{r}\right)^{1 / 2}
\end{aligned}
$$

$$
\begin{aligned}
v_{c} & =\frac{2 \pi a}{p} \quad p^{2}=\frac{4 \pi^{2}}{G M} a^{3} \\
v_{c}^{2} & =\frac{4 \pi^{2} a^{2}}{p^{2}} L^{\prime} \\
w_{c}^{2} & =\frac{4 \pi a^{2}}{4 \pi a^{3}} G M \Rightarrow v_{c}^{2}=\frac{G M}{a} \\
E_{t o t} & =\frac{1}{2} M N^{2}-\frac{G M M}{a} \\
& =\frac{1}{2} m \frac{G M}{a}-\frac{G M M}{a} \quad K=\frac{1}{2} \cup \\
& =\frac{-G M M}{2 a}
\end{aligned}
$$

Genc-alized orbital speed

$$
\begin{aligned}
& \frac{1}{2} m v^{2}-\frac{G M m}{r}=-\frac{G M m}{2 a} \\
& \frac{1}{2} m v^{2}=\frac{G m m}{r}-\frac{G M m}{2 a} \\
& v^{2}=G m\left(\frac{2}{r}-\frac{1}{a}\right)
\end{aligned}
$$

pecthelion $N_{p}^{2}=\frac{c_{q} m}{a}\left(\frac{1+e}{1-e}\right)$
aplelion $N_{a}^{2}=\frac{G M}{a}\left(\frac{1-e}{1+e}\right)$

The sky

circumpolar stars

$$
E
$$

$$
\text { Latitude } 290^{\circ}-e_{42}^{\circ}
$$

looking North

Altitude - Azimuth "Horizon" System latitude- longitude

Equatorial Coordinates

- aligned to Earth's system $\quad(\theta, \varphi, r)$
$-\theta, \varphi=0,0 \rightarrow$ Where the ecliptic e equator cross on the vernal quint I
- declination (latitude) δ degrees

RA - right ascension (longitude) a hours ???

1 hour $=15$ degrees
hours degrees
minutes $!=$ arcminutes $1 / 60$ degree
seconds! = areseconds $1 / 60$ arcminter
($\left.5^{h} 55^{m} 12^{s}, 12^{\circ} 15^{\prime} 25^{\prime \prime}\right)$
Angular separation $(D \theta)$ degrees, arcmin

$$
\begin{aligned}
\Delta \alpha & =\Delta \theta \frac{\sin \phi}{\cos \delta} \\
\Delta \delta & =\Delta \theta \cos \phi \\
(\Delta \theta)^{2} & =(\Delta \alpha \cos \delta)^{2}+(\Delta \delta)^{2}
\end{aligned}
$$

Sidereal Time
the amount of "clocle time" since the vernal equinox crossed the meridian
the RA coordinate of a star crossing the meridian at a given point is time meridian $=$ the line that pass through North, zenith, South perpendicular to horizon

$$
\text { Betelgeuse }=5 \mathrm{~h} 55^{\mathrm{m}}
$$

Sidereal Day
length of time
between successive crossings of the vernal o...inaod aron the 1
23^{h}

Solar Day
length of time between successive
crossings of the Son -...r b. meridian

$$
\mathrm{T}=24^{\mathrm{h}}
$$

(Solar day)

$$
\mathrm{T}=23^{\mathrm{h}} 56^{\mathrm{m}} 04^{\mathrm{s}}
$$ (Sidereal day)

Light
what is light?
"Sometimes" it's a wave
"sometimes" it's a particle \rightarrow photon
Fast! $\quad 3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
(no mass)
$3 \times 10^{5} \mathrm{kmls}$
Energy
some behavior can be described by a wave particle how?
wave length
double -slit experiment
Doppler effect antenna
photo electric effect travel over long dotances momentum $\quad E=p C$ gravity

Electromagnetic spectrum

EM bands hight
Gamma Rays
x-rays

$$
1 \mathrm{~nm}<\lambda<10 \mathrm{~nm}
$$

uv
visible (optical)
$10 \mathrm{~nm}<\lambda<400 \mathrm{~nm}$

IR
$400 \mathrm{~nm}<\lambda<700 \mathrm{~nm}$

Microwave
$700 \mathrm{~mm}<><1 \mathrm{~mm}$
Radio low lo cm> $>\lambda$

$$
\begin{aligned}
A_{\text {Mot rom }} & =0.1 \mathrm{~nm} \\
A & =1 \times 10^{-10} \mathrm{~m}
\end{aligned}
$$

why is light useful?
elemental composition
direction of motion
presence of light-emiltiar objects
temperature
density
Kirchoft's Laws

1. a hot duse gas or solid object emits a continuous spectrum "all wavelengths, unbroken"
2. hot, diffuse gas produces bright spectral lines "emission spectrum"
3. a cool, diffuse $\partial^{2 s}$ in front of a continuous section produce) dark spectral lines \rightarrow "absorption spectrum"

HW2 now due 9/27@2pm Python Intro Wedresday 9/15
hydrogen

$$
\begin{aligned}
E_{n} & =\frac{-13.6 c V}{n^{2}} \\
\Delta E & =E_{f}-E_{i} \\
& =E_{1}-E_{2}
\end{aligned}
$$

$$
\begin{aligned}
& E_{\gamma}=h f \\
& h=\text { planch constat } \\
& 6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{H}_{3} \\
& E_{\gamma}=\frac{h c}{\lambda} \\
& \Delta E_{i f}=\frac{h c}{\lambda}
\end{aligned}
$$

"ideal emitter" - absorbs all the light that is incident upon it, the - reradiate
"blackbody" the same amount of ereesy in a characteristic spectrum

Wien's Law

$$
\lambda_{\text {max }}=\frac{0.0029 \mathrm{~m} \cdot \mathrm{~K}}{T}
$$

Luminosity

$$
\begin{aligned}
& L=A \sigma T^{4} \\
& \sigma=\text { stefan-Boltzmann constant } \\
& 5.67 \times 10^{-8} \\
& w m^{-2} K^{-4}
\end{aligned}
$$

Plancle Equation

$$
\begin{aligned}
B_{\lambda}(T)=\frac{2 h c^{2} / \lambda^{5}}{e^{(h c / \lambda k T)}-1} & h=\text { planck } \\
\sum_{\text {Intensity }} & \\
& c=\text { Boltzmann } \\
& =\text { Speed ot light }
\end{aligned}
$$

$$
\begin{array}{r}
L_{\lambda} d \lambda=b_{\lambda}(T) d_{1} d A \cos \theta d \Omega \\
A m^{2}
\end{array}
$$

Telescopes
What is a telescope?
Why is it useful (for astronomy)?
lenses al Mirrors
Magnification / Resolution
Different EM bands
see to further distances
Light Gathering Power bigger is better

$$
L G P \quad \alpha d^{2}=A r e
$$

Resolution "see mure detail" smaller is Limited by diffraction of light

 waveleleht
Airy Disk of light
Rayleigh Criterion
uminimum resolvable angular distance between two objects"
two objects we joist resolved ad $\frac{\text { radians }}{\theta_{\min }}=\frac{1,22 \lambda}{\Omega^{D}}$ when the central maximum aperture overlaps the Lot minimum ot
te other diameter

Simplest Possible design - a single lens

Refracting Telescope

$$
\begin{array}{ll}
\tan \theta=\frac{d}{F_{\text {obj }}} & \\
\tan \phi=\frac{d}{\text { Foyer }} \frac{\phi}{\theta}=\frac{f_{\text {obj }}}{\text { fol length e }^{f_{\text {eye }}}}=m \text { magnification }
\end{array}
$$

Spherical abberation
astigmatism
con

Hybcid deivn
schmidt - tippe (ens

Ritchey-Chrétien hyperhaloid mirrors
mirror
practical considerations
fouding damaje
training
slography
maurfactoring
light pollotoun
demand
moorting design cloud) type of obseravation at mosphere

Spectrographs

$$
\begin{aligned}
& \text { disperse light by wavelength } \\
& \begin{array}{l}
\text { disperse light by wavelength } \\
\text { using prism or gratings }
\end{array} \\
& \text { gratings more common in } \\
& \begin{aligned}
& \text { Modern } \text { applications } \rightarrow \text { reflective } \\
& \text { transmission }
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { slit spacing angle integer wavelength } \\
\text { of order }
\end{array} \\
& \text { diffracted } \\
& \text { light } \\
& \text { Resolution } \\
& R=\frac{\lambda}{d \lambda} \quad \begin{array}{l}
\text { wavelength } \\
\text { distance be between }
\end{array} \\
& \text { distinguishable features }
\end{aligned}
$$

Detectors
the human eye photographic emulsions (til ml plates) photoelectric effect devices - photo emissive multiplier tubes

- photocondictive charge -coupled devices (CCDS)

Quantum Efficiency "how many incident photons do you defect?"

$$
\begin{aligned}
& \text { eyes - aver } 1^{0} 6 \\
& \text { film - } \quad Z \\
& \text { multiplier }
\end{aligned}
$$

$$
\begin{aligned}
& C C D S-802
\end{aligned}
$$

CCD
grids of capacitive "wells" that collect charge produced via photoelectric effect
 and convert to digital image

The Atmosphere

most of Em spectrum is blocked by atmosphere light that does make it through is blurred by atmospheric refraction producing an effect called "seeing"

Plane waves from distant point source
turbulent
Turbulent layer layer in atmosphere always changing so amount of blurring constantly varies

Interferometry
Combining images from multiple telescopes to create an image with higher resolution. usually used in radio astronomy to improve resolution at very long wavelengths $\theta_{\text {min }}=\frac{1.22 \lambda}{D}$

Resulting image has same resolution as a single dish with size $=$ separation between to smaller telescopes!
but not the sane light gathering power!

Angular Size
1 full circle 360°

$$
\begin{aligned}
& 1 \text { degree }=60^{\circ} \\
& 1 \text { arcmin }=60^{\circ}
\end{aligned}
$$

sizes of things in $s k y$
big dipper $\quad 24^{\circ}$
thumb © arms 1°
$\operatorname{mos} 1 \operatorname{sun} \quad 30^{\prime}=0.5^{\circ}$
Jupiter $40^{\prime \prime}$
w/ small angl approx.".

$$
\frac{\text { physical size }}{\text { distance }}=\frac{\theta "}{206,265 " / \mathrm{rad}}
$$

How would you measure distance in space? trigonometric parallax
standard candle - something we know the luminosity of
"Spectroscopic parallax."
trigonometric parallax

$$
d=\frac{206265^{\prime \prime} / \mathrm{rad}}{P^{\prime \prime}} \mathrm{AV}
$$

define a parsec

$$
\begin{aligned}
& 1 p c=206,265 \mathrm{AV} \\
& 1 d=\frac{1}{p^{11}} p c
\end{aligned}
$$

parsec is distance when $p=1^{11}$
parallax arcsecond

$$
1 p c=3.26 \mathrm{ly}
$$

nearest star proximal cen 4.2 dy $p=0.77^{\prime \prime}$
smallest "possible" $p=\sim 20$ microarsec $\sim 0,00002$ " $=50,000 \mathrm{pc}$

Brightness
Luminosity $(w)\left\{\begin{array}{l}\text { intrinsic property } \\ \text { total energy output of star }\end{array}\right.$
Brightness $\left(w / M^{2}\right)$ how bright the star appears observed
aka "flux"

$$
\begin{aligned}
& b=\frac{L}{4 \pi d^{2}} \\
& L \text { Sun }=3.8 \times 10^{26} \mathrm{~W} \\
& d=1.5 \times 10^{11} \mathrm{~m} \\
& L=A \sigma T^{4} \\
& =4 \pi R^{2} \sigma T^{4}
\end{aligned}
$$

from a given distance

$$
\begin{aligned}
b & =\frac{3.8 \times 10^{26} \mathrm{w}}{4 \pi\left(1.5 \times 10^{11} \mathrm{~m}\right)^{2}} \\
& =1,344 \mathrm{~W} / \mathrm{m}^{2}
\end{aligned}
$$

"polar constant"

Magnitudes
6 groups
$100 \times$
brightais
ratio $\left[\begin{array}{l}1 \text { st brightest } \\ 2 \text { nd } \\ \text { bed } \\ 4 \text { th } \\ 5 \text { th } \\ 6 \text { th } \\ \text { faintest }\end{array}\right.$
human eye's response to light is logarithmic groups separated by flux ratios, not differences
difference of 5 magnitudes equal "logarithmic scale" to ratio of 100 in brightness

$$
\begin{aligned}
\frac{b_{1}}{b_{2}}=100^{\left(m_{2}-m_{1}\right) / 5} & =100^{5 / 5}=100^{1}=100 \\
& =100^{10 / 5}=100^{2}=10,000 \\
b=\frac{L}{4 \pi d^{2}} L=A \sigma T^{4}= & =100^{1 / 5}=10 R^{0.2}=2.512
\end{aligned}
$$

$$
\begin{aligned}
& \frac{b_{1}}{b_{2}}=10^{2\left(m_{2}-m_{1}\right) / 5} \\
& \frac{b_{1}}{b_{2}}=10^{0.4\left(m_{2}-m_{1}\right)}=10^{\left(m_{2}-m_{1}\right) / 2.5} \\
& \log _{10}\left(10^{\left.\left(m 2-m_{1}\right) / 2.5\right)}=\log _{10} \frac{b_{1}}{b_{2}}\right. \\
& m_{2}-m_{1}\left(2.5=\log _{10} b_{1} / b_{2}\right. \\
& m_{2}-m_{1}=2.5 \log _{10} b_{1} / b_{2} \\
& m_{2}-m_{1}=-2.5 \log _{10} b_{2} / b_{1}
\end{aligned}
$$

Spectroscopic parallax
magnitudes
log scale
$\Delta m=5 \rightarrow 100: 1$ brightness
$\Delta m=$ flux ratios

$$
\Delta m=1 \quad \rightarrow 100^{1 / 5: 1}=2.512: 1
$$

Smaller apparent magnitudes (more negative) are brighter Sun -26.8
Sirius $\quad-1.46$

$$
m_{1}-m_{2}=-2.5 \log \left(f_{1} / f_{2}\right)
$$

Vega 0.0000000000
m apparent magnitude $b=\frac{L}{4 \pi d^{2}}$
naked eye $\sim+6$
M absolute magnitude $b=\frac{L}{4 \pi(10 p c)^{2}}$
theoretical limit +29

$$
M-M=-2.5 \log _{10}\left(\frac{L}{\frac{4 \pi a^{2}}{L / 4 \pi(10)^{2}}}\right)
$$

for current modern tillesopes

$$
\begin{array}{ll}
M-M=-2 \cdot 5 \log _{10}\left(\frac{\left.\frac{1}{\frac{5 \pi a^{2}}{\frac{1}{4} \pi(10)^{2}}}\right)}{}\right. & -\log \left(\frac{1}{x^{2}}\right)=+2 \log x \\
M-M=-2 \cdot 5 \log 10\left(\frac{10^{2}}{d^{2}}\right) & \log \left(\frac{x}{y}\right)=\log x-\log y \\
M-M=-2 \cdot 5 \log \left(10^{2}\right)+2 \cdot 5 \log \left(d^{2}\right) & \text { distance modulus } \\
M-M=-5 \log (10)^{1}+5 \log d \\
M-M=5 \log d-5
\end{array}
$$

${ }^{1} d$ in parsecs

$$
M_{\text {sin }}=4.76
$$

Adding Majnitudes

$$
\begin{array}{r}
M_{1}+m_{2} \quad M_{i}-2 \cdot 5 \log \left(L_{1} / u \pi d_{1}^{2}\right) \\
m_{2}=-2,5 \log \left(L_{2} / 4 \pi d^{2}\right)
\end{array}
$$

The sun what do you know about the sun?
93 million miles away
150 million un
powered by nuclear fusion $\mathrm{H} \rightarrow \mathrm{He}$
totally average

$$
\begin{gathered}
T_{\text {eff }}=5780 \mathrm{~K} \quad \text { "Surface } \\
\text { pale yellow } \begin{array}{r}
\text { temp" }
\end{array}
\end{gathered}
$$ onion stecturer magnetic field eject matter

$$
\begin{aligned}
& R_{0}=6.96 \times 10^{5} \mathrm{~km}=1 \text { solan } \\
& L_{0}=3.8 \times 10^{26} \mathrm{~W}=10^{33 \mathrm{co}} / \mathrm{s}
\end{aligned}
$$

1 solan Luminosity spin/rotate

$$
M_{\theta}=1.99 \times 10^{30} \mathrm{kj}=1 \text { solar }
$$

chemical composition
by mas
$20^{\circ} \mathrm{H}$
$28^{\circ} \% \mathrm{He}$
2% everything
$0, N, C, F e, M \gamma$, ri "Metal"
mean density $1,440 \mathrm{~kg} / \mathrm{m}^{3}$

interior temple pressure

HF 3
due 11:59pn

$$
\begin{aligned}
& \text { loll 1 } \\
& \text { Midterm }
\end{aligned}
$$

during total
solar

Observing

$$
\begin{aligned}
& \mathrm{Night}_{8 \mathrm{pm}} \\
& 10 \mathrm{l}_{13} 14_{\text {or } 15}
\end{aligned}
$$

Solar flare

Hydrostatic Equilibrium
gravity vs. pressure
density $=\rho(r)$

volume $=d r d A$
mas $d_{m}=\rho(r) d r d A$

$$
\begin{aligned}
& F_{p r r s)} \begin{aligned}
& F_{g r a r}=\frac{G M M}{r^{2}}=\frac{-G M(r) d m}{r^{2}} \\
&=\frac{-G M(r)}{r^{2}} p(r) d r d A \\
& F_{g(r)}
\end{aligned} \\
&=-g(r) p(r) d r d A
\end{aligned}
$$

$$
\begin{aligned}
\text { net pressure } & =P(r+d r)-P(r) \\
F_{p(e s)} & =(P(r+d r)-P(r)) d A=d P d A \\
& F_{\text {press }}=F_{\text {grad }} \\
d P d A & =-g(r) p(r) d r d A \\
d P & =-g(r) p(r) d r \\
\frac{d P}{d r} & =-g(r) p(r)=-\frac{G M(r) p(r)}{r^{2}}
\end{aligned}
$$

Central Pressure

$$
\begin{aligned}
& a \gg \text { um } \quad\langle p\rangle=1440 \quad 4 \mathrm{~g} / \mathrm{m}^{3} \\
& M(r)=\frac{4}{3} \pi r^{3}\langle\rho\rangle \\
& \frac{d p}{d r}=\frac{-G M(r) p(r)}{r^{2}}=-\frac{4}{3} G \pi r^{3}\langle p\rangle\langle p\rangle \\
& \frac{d P}{d r}=-\frac{4}{3} \pi G r\langle\rho\rangle^{2} \\
& \int_{P_{C}}^{0} d \rho=-\frac{4}{3} \pi G\langle\rho\rangle^{2} \int_{0}^{R} r d r \\
& \left.\lambda_{\text {central pressure }}^{\lambda}-P_{c}=-G 4 / 3 \pi<\rho\right)^{2} \frac{1}{2} R^{2}
\end{aligned}
$$

$$
\begin{array}{cl}
P_{c}=\frac{2}{3} \pi G\langle\rho\rangle^{2} R^{2} \\
P_{c}=2.5 \times 10^{16} \mathrm{~N} / \mathrm{M}^{2} & \text { Mariana Trench } \\
\rightarrow 250 \text { billion atm } 1,070 \text { atm } \\
T & =15 \text { million } K
\end{array}
$$

how do we know the mass of the sun?

$$
p^{2}=\frac{4 \pi^{2}}{G M} a^{3}
$$

Velocities - Motions of stars away mun n

$$
\begin{gathered}
\frac{\lambda_{o b s}-\lambda_{\text {rest }}}{\lambda_{\text {rest }}}=z \\
\text { "redshift" } \\
z=\frac{V_{r}}{C} \text { velocity }
\end{gathered}
$$

"proper motion"

HW 3 Equation Reminders
$d=\frac{1}{p^{\prime \prime}}$ in parsecs, arcseconds
parallax distances

$$
m-M=5 \log 10 d-5
$$

apparent absolute in parsecs magnitude
distance modulus

$$
\frac{x}{d}=\frac{\theta^{\prime \prime}}{206,265^{\prime \prime}} \quad L=4 \pi R^{2} \sigma T^{4}
$$

magnitudes / fluxes

$$
\begin{aligned}
m & =-2.5 \log f \\
& =-2.5 \log \left(\frac{L}{4 \pi d^{2}}\right)
\end{aligned}
$$

$$
m_{1}-m_{2}=-2.5 \log f_{1} / f_{2}
$$

magnitude differences

$P^{2}=\frac{4 \pi^{2}}{G\left(M_{1}+M_{2}\right)^{2}} a^{3}$| $G=4 \pi^{2}$ |
| ---: |
| in $A V$ |
| y^{r} |
| M_{0} |

"proper motion"
measure side - to - side velocity
typically measure w/ parallax
\rightarrow change in sky position over time

$$
\begin{aligned}
& \mu=P M \text { in } " / \text { year } \\
&=\frac{d \theta}{d t}=\frac{v_{\theta}}{d} \quad v_{\theta}=4.74 \mu d \\
& {[\mathrm{~km} / \mathrm{s}] \quad[1 / / y r][P C] }
\end{aligned}
$$

therefore "true space motion"

$$
v_{*}^{2}=v_{\text {rec }}^{2}+v_{\theta}^{2}
$$

Binary Stars (+ exoplanets)
get mass from observing orbits
so " 6 of all stars in binary (or bigger) systems
Visual Binaries

Sirius $A+B$

stars need to be close or far apart to resolve orbits usually takes decades to get nigh quality data

Spectroseopic Binaries - bserve shifting spectral featuces in stellar spectra to reconstruct velocity eurves
(a) $\stackrel{\text { To Earth }}{\rightleftarrows}$

(b)
(c)
(d)

To the

(b)

$$
\begin{aligned}
& N_{A} M_{A}=N_{B} M_{B} \Rightarrow \frac{M_{B}}{M_{A}}=\frac{N_{A}}{N_{B}} \\
& P=\frac{2 \pi a_{A}}{N_{A}}=\frac{2 \pi a_{B}}{N_{B}} \quad a=\frac{P N}{2 \pi}
\end{aligned}
$$

$$
p^{2}=\frac{4 \pi^{2}}{G\left(m_{A}+M_{B}\right)}\left(a_{A}+a_{B}\right)^{3}
$$

$$
\begin{aligned}
& P^{2}=\frac{4 \pi^{2}}{G\left(M_{A}+M_{B}\right)} \frac{P^{3}\left(N_{A}+v_{B}\right)^{3}}{(2 \pi)^{3}} \\
& M_{A}+M_{B}=\frac{P}{2 \pi G} \frac{\left(N_{A}+v_{B}\right)^{3}}{\sin ^{3} i}
\end{aligned}
$$

$$
v_{\text {true }}=v \sin i
$$

Eclipsing Binaries
(a)

(b)

Mass of a star is the Eundamental defining property $L \propto M^{4}$

Initial Mass function More massive stars less common

100:1

$$
1 m_{0}: 10 m_{0}
$$

main sequence lifetime $t_{m s} \propto \frac{1}{m^{2.5}}$

Nuclear fusion

4 Hydrogen $\rightarrow 1$ Helium

- protons
- neutrons
- electrons

Atomic Mass Unit

$$
\begin{aligned}
& 1 \text { AMU }=1 / 12 \text { carbon atom }=1.66 \times 10^{-27} \mathrm{~kg} \\
& E=M C^{2} \\
& =931,5 \text { million electron volts }(M \mathrm{MCV})
\end{aligned}
$$

$$
1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}
$$

$$
M_{H}-M_{p}-M_{C}=-13.6 \mathrm{eV}
$$

binding energy
H tenergy $=$ proton t election

$$
\begin{aligned}
4 H & -1 H_{e}=t_{26,71} \quad \begin{aligned}
& M_{e} t_{0} \text { or } \\
& \text { total mass }
\end{aligned} \\
E & =0.002\left(0.1 \times m_{0}\right) e^{2} \\
& =1.3 \times 10^{43} \mathrm{~J} 1 L_{0} \\
& =10^{10} \text { years }
\end{aligned}
$$

Class Telescope Night Wed @ 8,pm
Midterm also wed in class don't forget your "chest" sheet

Proton - Proton Chain
Step 1

$$
\text { deuterium }=1 p+1 n
$$

$$
1_{H}+{ }^{1} H \Rightarrow{ }^{2} H+e^{+}+\nu
$$

positron neutrino
step 2

$$
\begin{aligned}
&{ }^{2} H+{ }^{1} H \Rightarrow{ }^{3} H e \\
&=2 p+1 n \\
& \text { gamma ray photon }
\end{aligned}
$$

repeat step 1 \& step $22^{3} \mathrm{He}$
step 3:
mort common 69° of the tire
PPI ${ }^{3} \mathrm{He}+{ }^{3} \mathrm{He} \Rightarrow{ }^{4} \mathrm{He}+{ }^{1} \mathrm{H}+{ }^{1} \mathrm{H}$
$31^{\circ} \%$ of time

$$
{ }^{3} \mathrm{He}+{ }^{4} \mathrm{He} \Rightarrow{ }^{7} \mathrm{Be}+\gamma
$$

$$
H_{H e}=a l p h a
$$

PPI $\neg_{B C}+e^{-} \rightarrow \imath_{L i}+\nu$

$$
7_{L i}+1 H \Rightarrow{ }^{4} \mathrm{He}+{ }^{4} \mathrm{He}
$$

$0.3 u$ of n time

$$
7_{\mathrm{BC}}+{ }^{1} H \Rightarrow{ }^{8} \mathrm{~B}+\gamma
$$

PPII. $8_{\mathrm{BC}} \Rightarrow{ }^{8} \mathrm{Be}+e^{+}+\nu \| \gamma_{\mathrm{Be}} \Rightarrow{ }^{4} \mathrm{He}+4 \mathrm{He}$

$$
\begin{aligned}
& { }_{1}^{1} \mathrm{H}+{ }_{1}^{1} \mathrm{H} \rightarrow{ }_{1}^{2} \mathrm{H}+e^{+}+\nu_{e} \\
& { }_{1}^{2} \mathrm{H}+{ }_{1}^{1} \mathrm{H} \rightarrow{ }_{2}^{3} \mathrm{He}+\gamma \\
& { }_{2}^{3} \mathrm{He}+{ }_{2}^{3} \mathrm{He} \rightarrow{ }_{2}^{4} \mathrm{He}+2{ }_{1}^{1} \mathrm{H} \\
& { }_{2}^{3} \mathrm{He}+{ }_{2}^{4} \mathrm{He} \rightarrow{ }_{4}^{7} \mathrm{Be}+\gamma \\
& \text { (PP I) } \\
& { }_{4}^{7} \mathrm{Be}+e^{-} \rightarrow{ }_{3}^{7} \mathrm{Li}+\nu_{e} \\
& { }_{4}^{7} \mathrm{Be}+{ }_{1}^{1} \mathrm{H} \rightarrow{ }_{5}^{8} \mathrm{~B}+\gamma \\
& { }_{3}^{7} \mathrm{Li}+{ }_{1}^{1} \mathrm{H} \rightarrow 2{ }_{2}^{4} \mathrm{He} \\
& \text { (PP II) } \\
& { }_{5}^{8} \mathrm{~B} \rightarrow{ }_{4}^{8} \mathrm{Be}+e^{+}+\nu_{e} \\
& { }_{4}^{8} \mathrm{Be} \rightarrow 2{ }_{2}^{4} \mathrm{He} \\
& \text { (PP III) }
\end{aligned}
$$

$$
\begin{aligned}
& 10^{57} \\
& 10^{56} \\
& 10^{55} \\
& 10^{45} \\
& 10^{39} \times 25 \mathrm{MeV} \\
& 10^{39} \mathrm{MCV} / \mathrm{S}
\end{aligned}
$$

HoW 4 now due $11 / 15 \quad 15,5 \rightarrow 15,7$
HL 5 now die $11 / 15$
$p-p$ chain

$$
\begin{aligned}
4^{1} H \rightarrow 4_{\mathrm{He}}+\gamma \quad T_{\text {core }} & >10 \text { million } \mathrm{K} \\
& =15 \text { million } \mathrm{K} \\
T_{\text {surf }} & =5200 \mathrm{~K}
\end{aligned}
$$

How do we go from high energy γ-cays @ 15 million k to visible light $@ \sim 6000 \mathrm{k}$? convection radiation
random walk
mean free path l
 number of steps N

$$
\begin{aligned}
& d=l \sqrt{N} \\
& N=\left(\frac{d}{l}\right)^{2} \\
& l=10^{-3} \mathrm{~m} \\
& d=R_{\text {sun }}=2 \times 10^{5} \mathrm{~km} \\
& N=10^{22} \\
& t=50,00 \text { years }
\end{aligned}
$$

convection

- hot gases rising, cool gases falling
- bulk motion of "cells" of gas
- net energy transport of energy from bottom to top
- no net transport of mass

Opacity (opaque)
mean fie e path depends on

- λ of light
- density
- temperature
- ionization / excitation states of atoms
inner regions dense, high T_{1} high ionization, short λ
outer regions low density, low $T_{\text {/ }}$ low ionization, long λ
when opacity is very high, cnersy is more efficiently transported by convection
radiation $\frac{d T}{d r}=\frac{3 p(r) K(r) L(r)}{64 \pi \delta_{S B} T(r)^{3} r^{2}}$
convection $\frac{d T}{d r}=\left(1-\frac{1}{\gamma}\right) \frac{T(r)}{p(r)} \frac{d p}{d r}$
r adiabatic index

$r=$ size of absorbers
$n=$ number density of absorbers

$$
\begin{aligned}
& V=L A \\
& N=n L A \\
& \text { Fechtion } \text { whore } \\
& \sigma_{\text {tot }}=n L A \sigma_{a} \quad F_{a b s}=\frac{\sigma_{\text {tot }}}{A}=n L \sigma_{a}=\tau \\
& \text { "optical depth" }
\end{aligned}
$$

small τ "optically thin"
loge τ "optically thick"

$$
\begin{aligned}
& d I=-(I)(n \sigma d L)=-I d \tau \\
& \frac{d I}{I}=-d \tau \quad \int_{\text {In }}^{I_{\text {In }}} \frac{d I}{I}=-\int_{0}^{\tau} d \tau
\end{aligned}
$$

Stellar Evolution
energy production (fusion)
energy transport (radiation, convection) opacity
gravity $>$ hydrostatic equilibrium $\frac{d P}{d r}=-p(r) g(r)$
radiation pressure
equation of state $P V=N K T \Rightarrow P=\frac{\rho k T}{\mu m_{H}}$
chemical composition
"mean madelvar
$\begin{array}{ll}\mathrm{X} & \mathrm{H} \quad 0.7\end{array}$
y He 0.28
MASS is He
z "metals" 0.02
most important detecminiar factor

"period of a stars life when it fuses H t. He in the core "

$$
p=\frac{\rho k T}{\mu M_{H}} \operatorname{coc}
$$

what changes do we expect to see as $H \rightarrow$ He?
energy generation rate

$$
\epsilon_{p p} \sim T 4
$$

$$
\begin{aligned}
& L=4 \pi R^{2} \sigma T_{\text {solface }}^{4} \\
& L_{\text {now }}=1.4 \times L \text { initial }
\end{aligned}
$$

main seyuence litetime

$$
t_{m s} \simeq \frac{1}{M^{2 \cdot r}}=10 \mathrm{GY}
$$

core contracts $\rightarrow T_{\text {core }}$ increases $H \rightarrow$ He shell burning

Red Giant Branch

Red Giants
$L \supset 100$ Lin
$T \sim 4000 \mathrm{~K}$
$R \sim 30-300 R_{\text {SUN }}$

degeneracy pressure keeps core from collapsing
electrons keep core supported instead thermal pressure

$$
P_{e} \sim p^{5 / 3}
$$

heliven flash © 100 million K in core
triple alpha process $\quad \alpha={ }^{4} \mathrm{He}$

$$
\begin{aligned}
& { }^{4} \mathrm{He}+{ }^{4} \mathrm{He} \rightarrow{ }^{8} \mathrm{Be} \\
& { }^{8} \mathrm{Be}+{ }^{4} \mathrm{He} \rightarrow{ }^{12} \mathrm{C}+\gamma \quad \epsilon_{3 \alpha} \sim T^{41} \\
& { }^{12} \mathrm{C}+{ }^{4} \mathrm{He} \rightarrow{ }^{16} \mathrm{O}+\gamma \\
& { }^{16} \mathrm{O}+{ }^{4} \mathrm{He} \rightarrow{ }^{20} \mathrm{He}+\gamma
\end{aligned}
$$

release $10^{11} L_{\text {sun all at once (few seconds) }}$
none rales it out of star
all the photons break electron degeneracy pressure, return star to ideal gas
expands us re

Helium -burning main

$$
\begin{array}{r}
\text { sequence }=\text { horizontal } \\
\text { branch }
\end{array}
$$

$$
(\mathrm{He}) \rightarrow \mathrm{C}
$$

What happens when you rue out of Helium in the core?
core will contract, but supported by degeneracy pressure core T increases

Star gets bigger, surface cools down H^{-}ion

$$
p+2 e^{-}
$$

lose outer layers of star to helium shell flashes

Hm $4 / 5$ Due Monday $11 / 15$
15.3 Mean Molecular Weights

See ch. 14.1 Eq. 14.9

$$
\mu=\left(2 x+\frac{3}{4} y+\frac{1}{2} z\right)^{-1}
$$

Mas Ms Lifetime
M_{0}
1
$1.5 \quad 1.5$ billie
3
5
9
15

100
yrs
10 billion

250 million
20 million
20 million
10 million

10,000

Why do high mars
stars have such
shoot ms lifetimes?
increased Mass
\rightarrow increased P,T, P,
fusion rate
CNO cycle
carbon, nitrogen, oxygen

$$
\begin{gathered}
E_{C N_{0}} \sim T^{20} \\
E_{P P} \sim T^{4}
\end{gathered}
$$

CNS

$$
\begin{aligned}
& { }^{12} \mathrm{C}+{ }^{1} H \rightarrow{ }^{13} \mathrm{~N}+\gamma \\
& { }^{13} \mathrm{~N} \rightarrow{ }^{13} \mathrm{C}+\mathrm{C}^{+}+V_{C} \\
& { }^{13} \mathrm{C}+{ }^{1} H \rightarrow{ }^{1} \mathrm{H} H e \\
& { }^{14} \mathrm{H}+\gamma \\
& 14 \mathrm{~N}+{ }^{1} H \rightarrow{ }^{15} 0+\gamma \\
& { }^{15} \mathrm{O} \rightarrow{ }^{15} \mathrm{~N}+e^{+}+V_{C} \\
& { }^{15} \mathrm{~N}+{ }^{1} H \rightarrow{ }^{12} \mathrm{C}+{ }^{4} H_{e}
\end{aligned}
$$

still do p-p chain in background $8 M_{0}$ and up:
carbon buening 600 million K

$$
\begin{aligned}
{ }^{12} \mathrm{C}+{ }^{12} \mathrm{C} \Rightarrow & { }^{16} \mathrm{O}+{ }^{4} \mathrm{He}+{ }^{4} \mathrm{He} \\
& { }^{20} \mathrm{Ne}+4 \mathrm{He} \\
& 23 \mathrm{Na}+\mathrm{p}^{+}=\mathrm{H} \\
& 23 \mathrm{Mg}+n \\
& 24 \mathrm{Mg}+\gamma
\end{aligned}
$$

- xyper burtimp

$$
\begin{aligned}
& 24 m g+{ }^{4} H e+{ }^{4} H e \\
& 28 S_{i}+{ }^{4} H e \\
& 31 \rho+H\left(\rho^{+}\right) \\
& 31 s+n \\
& 325+\gamma
\end{aligned}
$$

$$
{ }^{16} \mathrm{O}+{ }^{16} \mathrm{O} \Rightarrow 28 \mathrm{Si}+{ }_{31}{ }^{4} \mathrm{He}
$$

Silicon burnir

$$
28 \mathrm{sir} \mathrm{t}^{28} \mathrm{si} \rightarrow 56 \mathrm{Fe}
$$

3.5 billion K

Iron carrot be fused into
heavier elements!
why is that a problem?

$$
\begin{array}{cc}
H M_{0} \quad H & 10 \text { yr } \\
& H e l \\
C & 300 \text { yr } \\
0 & 200 \text { days } \\
\text { si } & 2 \text { days }
\end{array}
$$

Supported by degeneracy pressure $+\sim 8$ billion k $\rho \sim 10^{10} \mathrm{~g}^{3} \mathrm{~cm}^{3}$
photo dissociate

$$
\begin{aligned}
& 56+\gamma \rightarrow 13^{4} H e+4 n \\
& 4 H e+\gamma \rightarrow{ }^{2} p+2 n \\
& p^{r}+e^{-} \rightarrow n+v_{e}
\end{aligned}
$$

core collapses
Earth sized core $\rightarrow 50$ kn at $10^{15} \mathrm{~g} / \mathrm{cm}^{3}$ second
collapse stops w/ neutron degeneracy bounces off

Star explodes
Supernova
$10^{a} L_{\text {sun }}$ © peak brightacss 100×10^{9} Lsun in neutrinos

Neutron capture reactions
$s^{10 w}$ process

$$
{ }_{z}^{A} X+n \rightarrow A_{z} x+\gamma \quad \text { rapid-proccss }
$$

beta decay

$$
A+1 X \rightarrow{ }_{z}^{A+1} X+e^{-1}+\nu_{c}+\gamma
$$

$\begin{aligned} & \mathrm{H} \\ & 1 \\ & \hline \end{aligned}$			Big Bang fusion			Dying low-mass stars			Exploding massive stars		Human synthesis No stable isotopes						${ }_{2}$
Li_{3}	Be_{4}		Cosmic ray fission			Merging neutron stars			Exploding white dwarfs			$\begin{aligned} & \mathrm{B} \\ & 5 \end{aligned}$	${ }^{6}$		O_{8}		Ne_{10}
Na	Mg_{12}											Al	$\underset{14}{\mathrm{Si}}$	$\begin{aligned} & P \\ & 15 \end{aligned}$	S	$\begin{gathered} \mathrm{Cl} \\ 17 \end{gathered}$	${ }_{\text {Ar }}^{18}$
$\begin{aligned} & \mathrm{K} \\ & 19 \end{aligned}$	$\begin{aligned} & \mathrm{Ca} \\ & 20 \end{aligned}$	$\begin{aligned} & \mathrm{Sc} \\ & 21 \end{aligned}$	$\begin{aligned} & \mathrm{Ti} \\ & 22 \end{aligned}$	$\begin{gathered} V \\ 23 \end{gathered}$	$\begin{aligned} & \mathrm{Cr} \\ & 24 \end{aligned}$	$\underset{25}{\mathrm{Mn}}$	$\begin{aligned} & \mathrm{Fe} \\ & 26 \end{aligned}$	$\begin{aligned} & \text { Co } \\ & 27 \end{aligned}$	$\begin{gathered} \mathrm{Ni} \\ 28 \end{gathered}$	$\begin{aligned} & \mathrm{Cu} \\ & 29 \end{aligned}$	$\begin{aligned} & \mathrm{Zn} \\ & 30 \end{aligned}$	${ }_{31}^{G a}$	${ }_{32}$	As 33	Se_{34}	$\begin{aligned} & \mathrm{Br} \\ & 35 \end{aligned}$	${ }_{36} \mathrm{Kr}$
${ }_{37}^{\mathrm{Rb}^{2}}$	$\begin{aligned} & \mathrm{Sr} \\ & 38 \end{aligned}$	$\begin{aligned} & Y \\ & 39 \end{aligned}$	$\underset{40}{\mathrm{Zr}}$	$\underset{41}{\mathrm{Nb}}$	Mo_{42}	${ }_{4}^{\mathrm{Tc}}$	R_{44}	R_{45}	$\begin{aligned} & \mathrm{Pd} \\ & 46 \end{aligned}$	Ag	${ }_{48}^{\mathrm{Cd}}$	$\ln _{49}$	$\begin{gathered} \mathrm{Sn} \\ 50 \end{gathered}$	$\begin{gathered} \mathrm{Sb} \\ 51 \end{gathered}$	Te	$\begin{aligned} & 1 \\ & 53 \end{aligned}$	Xe 54
$\begin{aligned} & \mathrm{Cs} \\ & 55 \end{aligned}$	$\begin{gathered} \mathrm{Ba} \\ 56 \end{gathered}$		$\begin{aligned} & \mathrm{Hf} \\ & 72 \end{aligned}$	$\begin{aligned} & \mathrm{Ta} \\ & 73 \end{aligned}$	${ }_{74}$	$\frac{\mathrm{Re}}{75}$	O_{76}	$\begin{aligned} & \mathrm{Ir} \\ & 77 \end{aligned}$	$\begin{aligned} & \mathrm{Pt} \\ & 78 \end{aligned}$	$\begin{aligned} & \mathrm{A} u \\ & \hline 9 \end{aligned}$	$\begin{aligned} & \mathrm{Hg} \\ & 80 \end{aligned}$	${ }_{81}^{\mathrm{Tl}}$	$\begin{aligned} & \mathrm{Pb} \\ & 82 \end{aligned}$	$\begin{aligned} & \mathrm{Bi} \\ & 83 \end{aligned}$	$\begin{aligned} & \text { Po } \\ & 84 \end{aligned}$	$\begin{aligned} & \mathrm{At} \\ & 85 \end{aligned}$	Rn_{86}
$\begin{aligned} & \mathrm{Fr}_{87} \end{aligned}$	$\begin{aligned} & \mathrm{Ra}_{88} \end{aligned}$		57	$\begin{aligned} & \text { Ce } \\ & 58 \end{aligned}$	$\begin{aligned} & \mathrm{Pr} \\ & 59 \end{aligned}$	$\begin{gathered} \mathrm{Nd} \\ 60 \end{gathered}$	Pm	Sm	$\begin{aligned} & \text { Eu } \\ & 63 \end{aligned}$	$\begin{aligned} & \mathrm{Gd} \\ & 64 \end{aligned}$	$\begin{aligned} & \text { Tb } \\ & 65 \end{aligned}$	$\begin{aligned} & \text { Dy } \\ & 66 \end{aligned}$	$\begin{gathered} \mathrm{Ho} \\ 67 \end{gathered}$	$\begin{gathered} \text { Er } \\ 68 \end{gathered}$	$\begin{gathered} \text { Tm } \\ 69 \end{gathered}$	$\begin{aligned} & Y b \\ & 70 \end{aligned}$	$L_{71}^{L u}$
			$\begin{gathered} \text { AC } \\ 89 \end{gathered}$	$\begin{aligned} & \text { Th } \\ & 90 \end{aligned}$	Pa	$\underset{92}{U}$	$\begin{aligned} & \text { Np } \\ & 93 \end{aligned}$	$\begin{aligned} & \text { Pu } \end{aligned}$	Am_{95}	Cm	Bk ${ }_{97}$	$\begin{aligned} & \mathrm{Cf} \\ & 98 \\ & \hline \end{aligned}$	$\underset{99}{\text { Es }}$	$\begin{gathered} \text { Fm } \\ { }_{100} \end{gathered}$	Md 101	No	$\underset{103}{\mathrm{Lr}}$

${ }_{26}^{56} \mathrm{Ni} \rightarrow{ }_{27}^{56} \mathrm{C}_{0}+e^{5}+\gamma_{e}+\gamma \quad 6.1$ days

$$
{ }_{27}^{56} \mathrm{C}_{0} \rightarrow{ }_{26}^{56} \mathrm{Fe}+e^{t}+\nu_{e}+\gamma \quad 77.7 \text { days }
$$

Neutron star
mass $\sim 1.5-3 m_{0}$
radius $10-15 \mathrm{~km}$
density $6 \times 10^{14} \mathrm{~g} / \mathrm{cm}^{3}$
$v_{\text {ese }}-0.6 \mathrm{c}$

(a)

$$
\begin{aligned}
M & =1.5 M_{\text {Sun }} \\
R & \approx 10 \mathrm{~km}
\end{aligned}
$$

(b)

Magnetic field

$$
\begin{aligned}
& B_{\text {Earth }}=0.5 \text { Gauss } \\
& B_{\text {son }}=1-10 \text { Gauss } \\
& B_{\text {NS }}=10^{14} \text { Gauss }
\end{aligned}
$$

Temp $\sim 10^{11} k \rightarrow 10^{6} k$
synchrotron radiation
acceleration of charged partides around magnetic field lines

Blackbody curve peals in X-ray

Pulsars
periods $0.25-2$ second

Black Holes

$$
\text { Mass } 3-10 m_{\text {sun }}
$$

Spin
electric charge

$$
\begin{aligned}
& \text { "size" } \\
& N_{\text {es }}{ }^{2}=\frac{2 G M}{R}=c^{2} \\
& R=\frac{2 G M}{c^{2}}
\end{aligned}
$$

Schwarzshild Radios
white Draits
leftover cores of Sun-like stars
C \& O, He

$$
\begin{aligned}
& M=1 \text { Msun } \\
& L=0.03 L_{\text {sun }} \\
& T \sim 27,000 K \\
& R \sim 0,008 R_{0}^{2} T_{\text {sun }} \sim R_{\text {Earth }} \\
& P \sim 3 \times 10 \mathrm{~g}^{6} / \mathrm{cm}^{3}
\end{aligned}
$$

chandraselchar
maximum mass $=1.44 \mathrm{~m}_{0}$ Limit

Nova
material in accretion disk undergoes spontaneous $H \rightarrow H_{e}$ fiji ion recurrent nova
1.3 Main Carbon burring \rightarrow Fe \rightarrow boom!

$$
L>10^{a} \operatorname{LSO}
$$

thermal runaway supernova

Interstellar medium
"state between the stan"
hydrogen 75%
helium $\sim 24 \sigma_{0}$
molecular gases $>\sim 19$
dui
neutral hydrogen (HI) 100^{\prime} s of kelvin
ionized hydrogen $(H) \neq$) 1000 's of K Balme line tracer hoy or recent sta formation 1000 of emission specter molecular hydrogen $\left(\mathrm{H}_{2}\right)$ co's of K
neutral hydrogen
mostly in ground state

- il +rue ground state is up/down
uplup or downldown have a
little extern energy

$$
\begin{array}{r}
\Delta E=6 \times 10^{-6} \text { eV } \\
\lambda=21 \text { cm (radio) }
\end{array}
$$

Molecular Hydrogen
Co $(2.6 \mathrm{~mm})$ emits at 2.6 mm dust

 molecular cloud core $150 k$ $10^{8} t^{2} / \mathrm{cm}^{3}$ $10-1000 \mathrm{~m}_{0}$
(Hz)

$$
H_{I}
$$

Virial Theorem

$$
\begin{aligned}
& k+v=0 \quad E=1 / 2 U \\
& k=1 / 2 u \\
& k=N(3 / 2 k T) \\
& U=-\frac{3}{5} \frac{G m^{2}}{R} \\
& N=\frac{M}{m} \frac{\text { total }}{\text { particle }} \\
& R=\left(\frac{3 N}{4 \pi \rho}\right)^{1 / 3} \\
& 3 N K T<\frac{3}{5} \frac{G m^{2}}{R} \\
& M>\left(\frac{5 k T}{G m_{p a r t i c l e}}\right)^{3 / 2}\left(\frac{3}{4 \pi p}\right)^{1 / 2} \\
& \text { Jeans mass }
\end{aligned}
$$

when you exceed limit (part) of the Cloud car collapse

Isothermal collapse $=$ "sane temperature" cloud is optically thin, heat radiates away

free -fall time

$$
\begin{aligned}
a= & \frac{G M(r)}{r^{2}} \quad r=\frac{1}{2} a t_{f f}^{2} \\
= & \frac{4}{3} \pi G p \\
& t_{f f} \sim \sqrt{\frac{1}{G p}}
\end{aligned}
$$

$$
t_{f f}=\sqrt{\frac{1}{G p}} \quad M \sim \sqrt{\frac{1}{p}}
$$

fragmenting big cloud into smaller
pieces that each collapse independently
into a star
smallest clump $\sim L_{2} M_{0}$
eventually cloud is too opaque adiabatic collapse \rightarrow higher \rightarrow higher P

initial mass
function

$$
h \& x \text { Persei }
$$

blue
not dense irregular shapes

M 13
stars more red red giants?
denser distribution spherical
open clusters
bluer, younger stars
Low densities
~ 1000 stars
$10-100$ million yeats old
found in areas of recent star formation
found in disks of apical galaxies
globular clusters cool, red stars old $13-14$ billion years
old high density 100,000 stars mainsequence, red giant stars
found wound galax,iss of all types

isochrones = same aye

main sequence fitting
distmes modulus $m-M=5 \log _{10} d(p c)-5$

Galilean Satellites of Jupiter- (1610)

* Earth moon

	Mass	Radius	Density	Iron ~ 7000
10	1.2	1.1	3500	$\mathrm{~kg}_{\mathrm{m}}{ }^{3}$

Titan
Atmosphere!
Methane
Nitrogen
Argon

Second largest Moon
surface pressure
1.5 atm

Ethane, Propane, other Organics
cold surface 94 K methane triple point

Asteroids
Small rocky bodies "mostly" between Jupiter of Mars
\rightarrow Asteroid belt

What are asteroids?

material was never able to form a planet add up to less than muss of Earth's moon
$10-30 \%$ of asteroids have Moons "satellites"

Comets
"Dirty Space Snowballs" highly elliptical orbits ep 0.9

- Mostly water ice ammonia
silicates (dust) organic material

Nudes ~ a few kM
coma heated cloud of gaildust

$$
\sim 10,000 \mathrm{~km}
$$

Tail ~ a few million km lar ion tail solar wind, magutic field lues
dost tail trailing partules pushed by radiation pressure

Radiation Pressure photons can carry momentum

$$
F=\frac{d p}{d t}=\frac{1}{c} \frac{d E}{d t} \text { Luminosity }
$$

consider a shell of radios R

$$
\text { pressure }=\text { force/area }=\frac{1}{c} \frac{d E}{d t} / 4 \pi R^{2} \quad P_{\text {rad }}=\frac{L_{0}}{4 \pi R^{2} C}
$$

distance form son

What are ringo?

ice particles! sizes between $1 \mathrm{~cm} l 3 n$

0

O
only a "few dozen" $=30 \mathrm{~m}$ meters thick
gaps come from orbital resonances, "shepherd moons"

why are rings?

Pan up close space ravioli

Kuiper Belt Objects
outside of Neptune's orbit

Pluto and friends
rock and ice combined
charon
dwarf planet Oort cloud (spherical) source of comets

Earth's Atmosphere

O by \#
$78 \% \quad N_{2}$
$21 \% \mathrm{O}_{2}$
$1 \% A C$
$0.04 \mathrm{CO}_{2} \mathrm{CO}_{2}$
trace $\mathrm{Ne}, \mathrm{He}, \mathrm{CH}_{y}, \mathrm{Kr}$

$$
\begin{aligned}
& P(r)=P_{0} e^{\frac{-r-R_{0}}{H}} \quad \text { equilibrium } \\
& P_{0}=\underset{\text { sec level }}{\text { pressure }}=1 \text { atm }=10^{5 \mathrm{~N} / \mathrm{m}^{2}} \\
& R_{0}=\text { radium }=6378 \mathrm{~km} \\
& H=\text { scale height }=\frac{k T}{5 \mu M_{p}} \\
& (D \text { drops to } 37 \eta)
\end{aligned}
$$

Hadley circuation

(a)

+ Corialis effect

Jupiter
atmosphere composition
Hydrogen, Heliv~
Ammonia $\left(\mathrm{NH}_{3}\right)$, Methane $\left(\mathrm{CH}_{4}\right)$
Ammonia Hydrosulfide $\left(\mathrm{NH}_{4} \mathrm{HS}\right)$
bright "zones" = gas moving \uparrow, see cool top

Stripes $=$ convection bards
shear between cloud bands causes cyclonic storms

interior structures

"adiabat" $=$ temp/pessure gradient

sources of internal heat? excess heat drives consection/cloud heavy elemat radioactivity
gravitational contraction / material differentiation greenhouse gases (methane; Neptune) cooling time

Equilibrium Temperature $T_{e q}=T_{*} \sqrt{\frac{R}{2 a}}\left(1-A_{B}\right)^{1 / 4}$ ability to retain teat attested by presence of atmosphere, greenhouse gases, internal heating Habitable Zone range of orbits around a star within which
a planetary surface can support liquid water given sufficient atmospheric pressure
$a=$ semimajor axis
$R=$ star radius
$T_{*}=$ star temp

$$
\begin{aligned}
A_{B} & =\text { "albedo." } \\
& \Rightarrow \% \text { light }
\end{aligned}
$$

reflected

What about moons?

The Drake Equation

$\left.\begin{array}{lccccccc} & N & R & f_{p} & n_{e} & f_{l} & f_{i} & f_{c} \\ \text { 1. } & 10^{-19} & 1 & 0.1 & 10^{-2} & 10^{-6} & 10^{-4} & 10^{-10}\end{array}\right] 10^{4}$

