

This is the problem of defining a distance in an expanding universe: Two galaxies are near to each other when the universe is only 1 billion years old. The first galaxy emits a pulse of light. The second galaxy does not receive the pulse until the universe is 14 billion years old. By this time, the galaxies are separated by about 26 billion light years; the pulse of light has been travelling for 13 billion years; and the view the people receive in the second galaxy is an image of the first galaxy when it was only 1 billion years old and when it was only about 2 billion light years away.

http://www.atlasoftheuniverse.com/redshift.html

http://www.atlasoftheuniverse.com/redshift.html

- 47.2 Gly

$$1 + z = \sqrt{\frac{1 + v/c}{1 - v/c}}$$

 $D_C =$ "comoving distance"

 $D_T =$ "light travel time distance"

$$D_A = \frac{D_C}{1+z}$$

$$D_L = (1+z) D_C = (1+z)^2 D_A$$

- 5.8 Gly

$$SB = \frac{L}{D^2} \ \frac{1}{(1+z)^4}$$

$$D_{L}(z) = (1+z)\frac{c}{H_{0}} \int_{0}^{z} \frac{dz}{\sqrt{\Omega_{M}(1+z)^{3} + \Omega_{k}(1+z)^{2} + \Omega_{\Lambda}}}$$

The Redshift-Distance Test

As a function of redshift, the apparent magnitude of distant objects changes under different cosmologies, for two reasons:

- The shape of space determines how photons spread out as they move outwards (the classic 1/d² effect)
- 2. The expansion history determines how the photons are redshifted.

This can be worked out under different cosmologies to derive a form akin to our regular magnitudedistance expression:

 $m - M = 5 \log d_L(z) - 5$

where $d_L(z)$ is the luminosity distance, and depends on H_0 , Ω_M , Ω_L , and k. We typically plot this using the distance modulus, not the distance, though:

If we had an object of fixed brightness -- a standard candle -- we could plot its apparent magnitude as a function of distance and work out the cosmology.

$$d_{L}(z) = (1+z)\frac{c}{H_{0}} \int_{0}^{z} \frac{dz}{\sqrt{\Omega_{M}(1+z)^{3} + \Omega_{k}(1+z)^{2} + \Omega_{\Lambda}}}$$

	Approximations for Distance Parameters							
	Host	SN	$m_{B,i}^0 + 5a_B$	$\sigma^{\mathbf{a}}$	μ_{Ceph}^{b} (mag	σ g)	$M^0_{B,i}$	
Remember Type la	M101	2011fe	13.310	0.117	29.135	0.045	-19.389	0
supernovae: the explosion of a	N1015 N1309	20091g 2002fk	16.756	0.125	32.523	0.081	-19.047	0
~ 1.4 Msun white dwarf. These	N1365 N1448	2012fr 2001el	15.482 15.765	0.125 0.116	31.307 31.311	0.057 0.045	-19.390 -19.111	0
are pretty good	N2442 N3021	2015F 1995al	15.840 16.527	0.142 0.117	31.511 32.498	0.053 0.090	-19.236 -19.535	0
approximations to a standard	N3370 N3447	1994ae 2012ht	16.476 16.265	0.115 0.124	32.072 31.908	0.049 0.043	-19.161 -19.207	0
candle, and they are extremely	N3972 N3982	2011by	16.048	0.116	31.587	0.070	-19.103	0
bright. That's exactly what we	N4038	2007sr	15.797	0.113	31.290	0.112	-19.058	0
want to use for the redshift-	N4424 N4536	2012cg 1981B	15.177	0.109	30.906	0.292	-19.534 -19.293	0
But are SN la's really standard	N4639 N5584	1990N 2007af	15.983 16.265	0.115 0.115	31.532 31.786	0.071 0.046	-19.113 -19.085	0
candles?	N5917 N7250 U9391	2005cf 2013dy 2003du	16.572 15.867 17.034	0.115 0.115 0.114	32.263 31.499 32.919	0.102 0.078 0.063	-19.255 -19.196 -19.449	0 0 0

Notes.

^a For SALT-II, 0.1 mag added in quadrature to fitting error.
^b Approximate, SN-independent Cepheid-based distances as described at the end of Section 3.

THE ASTROPHYSICAL JOURNAL, 826:56 (31pp), 2016 July 20

Table 5 Approximations for Distance Parameters

Which gives an average peak
absolute magnitude of -19.26
+/- 0.16.

This uncertainty in peak mag includes the distance uncertainties to the galaxies, so the real dispersion in peak magnitude is even smaller, about 0.1 mags or so. That's a pretty good standard candle.

But there's a significant drawback to using Type Ia SNe. You gotta find them...

Approximations for Distance Parameters											
Host	SN	$m_{B,i}^0 + 5a_B$	$\sigma^{\mathbf{a}}$	μ_{Ceph}^{b} (mag	σ g)	$M_{B,i}^0$					
M101	2011fe	13.310	0.117	29.135	0.045	-19.389	0				
N1015	2009ig	17.015	0.123	32.497	0.081	-19.047	0				
N1309	2002fk	16.756	0.116	32.523	0.055	-19.331	0				
N1365	2012fr	15.482	0.125	31.307	0.057	-19.390	0				
N1448	2001el	15.765	0.116	31.311	0.045	-19.111	0				
N2442	2015F	15.840	0.142	31.511	0.053	-19.236	C				
N3021	1995al	16.527	0.117	32.498	0.090	-19.535	0				
N3370	1994ae	16.476	0.115	32.072	0.049	-19.161	C				
N3447	2012ht	16.265	0.124	31.908	0.043	-19.207	C				
N3972	2011by	16.048	0.116	31.587	0.070	-19.103	0				
N3982	1998aq	15.795	0.115	31.737	0.069	-19.507	0				
N4038	2007sr	15.797	0.114	31.290	0.112	-19.058	0				
N4424	2012cg	15.110	0.109	31.080	0.292	-19.534	0				
N4536	1981B	15.177	0.124	30.906	0.053	-19.293	0				
N4639	1990N	15.983	0.115	31.532	0.071	-19.113	0				
N5584	2007af	16.265	0.115	31.786	0.046	-19.085	0				
N5917	2005cf	16.572	0.115	32.263	0.102	-19.255	0				
N7250	2013dy	15.867	0.115	31.499	0.078	-19.196	0				
U9391	2003du	17.034	0.114	32.919	0.063	-19.449	0				

Notes.

^a For SALT-II, 0.1 mag added in quadrature to fitting error.

^b Approximate, SN-independent Cepheid-based distances as described at the end of Section 3.

THE ASTROPHYSICAL JOURNAL, 826:56 (31pp), 2016 July 20

Table 5 . ..

RIESS ET AL.

How would you find enough supernovae to determine cosmological parameters?

Using supernovae to study cosmology

- Take a BIG picture of the sky.
- Come back next month and take the same picture.
- Compare the two. *Differences?*
- If you find a possible supernova, take a spectrum of it and make sure it is a Type Ia SNe.
- Also take a spectrum of the galaxy it lives in, to find its redshift.
- Watch the supernova as it fades, so we can get its peak apparent magnitude. This is important -- you probably didn't catch it when it was at its peak, so we need to fit it to a standard light curve to derive its peak magnitude.
- Keep doing this so you have a big sample of high redshift supernovae. Then compare those supernovae to ones at lower redshift.

COLLEGE OF ARTS AND SCIENCES **ASE WESTERN RESERVE** More recent data: HST discovered supernovae, extending to higher redshift (Riess et al 2007). In this plot μ =m-M, the distance modulus. Curvature in the data is inconsistent with models that use dust or evolution to explain faintness of high-z SNe; instead it is indicative of the "jerk" in the expansion history when lambda began to dominate and the universe went from decelerating to accelerating.

45

40

35

30

Ľ

Constraints from Supernovae:

Remember, they tell us that the universe is accelerating in its expansion. So what does that mean for the universe's cosmological parameters?

Think about plotting a "plane" of all possible Ω_M , Ω_Λ values. On this plane we can also plot regions that show

- shape of space
- accelerating / decelerating universe
- final outcome (expands forever or recollapses)

So what values for lambda do we get from the supernovae? Acceleration means Ω_{Λ} is "beating" Ω_{M} .

Things to notice.

- An accelerating Universe is older. (ie the expansion rate was slower in the past, so the universe took longer to grow to its present size.
- Even universes which expand forever can be spatially flat or closed, and universes which collapse may yet be spatially open.
- As time goes by, Λ wins. F_Λ ~ R, F_{gravity} ~ R⁻². If the cosmological constant exists, it was end up dominating the expansion.

A "union" plot-- multiple datasets, multiple methods

CMB = microwave background, sensitive to shape of space SNe = supernovae, sensitive to R(t), the rate of expansion of the universe **BAO** = tracing large scale structure of galaxies, sensitive to matter density parameter.

Working together, they suggest we live in a universe with:

- Ω_M ~ 0.25 \bullet
- $\Omega_{\Lambda} \sim 0.75$ \bullet
- Other observations give $H_0 \sim 69-72$ km/s/Mpc \bullet
- **Results in t** $_0$ ~ 13.8 Gyr \bullet

