Needles in a Haystack
 looking for tiny, faint galaxies in the Local Group

Bill Janesh (Indiana University)

- Katherine Rhode (IU), Betsey Adams (ASTRON), Martha Haynes (Cornell), Riccardo Giovanelli (Cornell); John Salzer (IU); John Cannon (Macalester), Steven Janowiecki (ICRAR)

5 Octöber 2017

Dwarf Galaxies

Sloan Digital Sky Survey

Albareti+ 2016

PanAndromeda Archaeological Survey

Richardson+ 2011

Dark Energy Survey

Large Synoptic Survey Telescope

LSST Consortium

THE LOCAL GROUP

MEET THE NEIGHBORS: IRREGULARS

Sextans B; HST

LGS 3; D. Hunter NGC 3109; GALEX

Sextans A; van Dyk

IC 10; Lowell Obs.

THE LOCAL GROUP
MEET THE NEIGHBORS: DWARFS

AND DOZENS MORE..

THE LOCAL GROUP

100,000 light-years

FORNAX
DARK MATTER MASS $=56,000,000 \mathrm{MSUN}$
STELLAR MASS $=20,000,000 \mathrm{Msun}$
GAS MASS $=<10,000 \mathrm{MSUN}$
74\% DM / 26\% STARS
DIAMETER = 10,000 LY

LEO T
DARK MATTER MASS $=6,300,000 \mathrm{MSUN}$
STELLAR MASS $=100,000 \mathrm{M}_{\text {SUN }}$
GAS MASS $=400,000 \mathrm{MSUN}$
92.5\% DM / 6\% GAS / 1.5\% STARS

DIAMETER = 750 LY


```
SEGUE 1
DARK MATTER MASS = 260,000 Msun
STELLAR MASS =.340 Msun
GAS MASS = 0.MsüN
99.9% DM / 0.1% STARS
DIAMETER = 100 LY
```

```
SEGUE 1
DARK MATTER MASS = 260,000 Msun
STELLAR MASS = 340 M SuN
GAS MASS = 0 MsuN
99.9% DM / 0.1% STARS
DIAMETER = 100 LY
```


LOOKING FOR NEW DWARF GALAXIES

IF SOME DWARF GALAXIES HAVE GAS, LET'S LOOK FOR NEW ONES WHERE WE SEE A LOT OF GAS!

THE LOCAL GROUP
NEUTRAL HYDROGEN GAS

THE LOCAL GROUP

THE ARECIBO RADIO TELESCOPE

ALFALFA

- Arecibo Legacy Fast ALFA Survey
- ALFA: Arecibo L-band Feed Array
- Blind HI survey
- Complete catalog covers ~7000 deg² of the sky (Haynes et al. 2018)
- 3.5 arc minute beam makes it possible to detect and resolve compact objects
- Detect sources with 2×10^{7}. $\mathrm{M}_{\text {sun }}$ of HI at Virgo Cluster distance, and < 105. Msun in Local Group
- More sensitive and broader coverage than previous blind HI surveys

ALFALFA source map (Haynes+ 2018)

$\sim 13,500$ sources with $-2000 \mathrm{~km} / \mathrm{s}<c z<18,000 \mathrm{~km} / \mathrm{s}(z<0.06)$

THE LOCAL GROUP

LITTLE BLOBS OF GAS

THE LOCAL GROUP

CAN WE SEE ANYTHING THERE?

THE LOCAL GROUP

CAN WE: SEE ANYTHING THERE?

THE LOCAL GROUP
THE WIYN TELESCOPE

galaxies $=$ dark matter + stars + gas (sometimes)

UC

Ultra-Compact

Small < 0.5 deg

HV

High Velocity
Nearby, but not in the Milky Way

Cloud
 Neutral Hydrogen

Figure 1. Upper panel: cloud at $l=330.11, b=+73.07, c z_{\odot}=124 \mathrm{~km} \mathrm{~s}^{-1}$, $W=19 \mathrm{~km} \mathrm{~s}^{-1}$, angular size of $6^{\prime} \times 4^{\prime}$, integrated flux of $0.60 \mathrm{Jy} \mathrm{km} \mathrm{s}{ }^{-1}$, $M_{\mathrm{H}_{\mathrm{I}}}=1.4 \times 10^{5} d_{\mathrm{Mpc}}^{2} M_{\odot}, M_{\mathrm{dyn}}\left[<R_{\mathrm{H}_{\mathrm{I}}}\right] \simeq 1.1 \times 10^{7} d_{\mathrm{Mpc}} M_{\odot}$. Lower panel: H_{I} line spectrum of the cloud shown above. The strong feature at zero velocity is the MW emission; the cloud is the narrow feature at $c z_{\odot}=124 \mathrm{~km} \mathrm{~s}^{-1}$.

- Cosmological simulations predict low mass dark matter "minihalos"
- UCHVCs match their predicted properties, but don't appear to have stars in SDSS/DSS/etc.
- gas + dark matter together?

Figure 1. Upper panel: cloud at $l=330.11, b=+73.07, c z_{\odot}=124 \mathrm{~km} \mathrm{~s}^{-1}$, $W=19 \mathrm{~km} \mathrm{~s}^{-1}$, angular size of $6^{\prime} \times 4^{\prime}$, integrated flux of $0.60 \mathrm{Jy} \mathrm{km} \mathrm{s}{ }^{-1}$, $M_{\mathrm{H}_{1}}=1.4 \times 10^{5} d_{\mathrm{Mpc}}^{2} M_{\odot}, M_{\mathrm{dyn}}\left[<R_{\mathrm{H}_{\mathrm{I}}}\right] \simeq 1.1 \times 10^{7} d_{\mathrm{Mpc}} M_{\odot}$. Lower panel: Hi line spectrum of the cloud shown above. The strong feature at zero velocity is the MW emission; the cloud is the narrow feature at $c z_{\odot}=124 \mathrm{~km} \mathrm{~s}^{-1}$.

Selecting a UCHVC sample

Figure 1. UCHVCs (filled circles) plotted in R.A.-decl. coordinates; gray scale (color in the online version) corresponds to the velocity of the cloud. The solid squares are the most isolated subsample of UCHVCs (see Section 2.4). The open diamonds are the $\alpha .40$ HVCs shown for reference. The size of the symbols is proportional to the angular sizes of the HVCs in all cases but are not to scale. The top panel is the spring R.A. region, the bottom panel the fall R.A. region. The hashed region corresponds to declination ranges not covered by $\alpha .40$. The fall sky shows prevalent HVC structure while the spring sky is relatively clear of HVCs.

> a. 40 sources from Adams+ 2013 \& additional ALFALFA sources from subsequent observations (100 total)

Properties of Leo P

-Distance: 1.62 +/- 0.15 Mpc
$\mathbf{M}_{\mathbf{V}}=-9.27+/-0.2$ Optical Diameter $=704 \mathrm{pc}$
$B-V=0.36+/-0.02, V-R=0.49+/-0.01$

- Mass: $\mathbf{M}_{\text {stars }}=5.6 \times 10^{5} \mathrm{M}_{\odot}$

$$
\begin{aligned}
& \mathbf{M}_{\mathbf{H I}}=8.1 \times 10^{5} \mathrm{M}_{\odot} \\
& \mathbf{M}_{\mathrm{dyn}}=2.5 \times 10^{7} \mathrm{M}_{\odot} \text { (to HI radius) }
\end{aligned}
$$

- Abundances:

$\log (\mathrm{O} / \mathrm{H})+12=7.17+/-0.04$ (1/42nd solar)
He Abundance (Y) $=0.251+/-0.015$ (consistent with primordial: $Y_{P}=0.248$)

Table data from Rhode+ 2013, Skillman+ 2013, McQuinn+ 2015

Why study UCHVCs?

We can learn about lots of things from low mass, gas rich galaxies
star formation
chemical evolution stellar fẹedback galaxy assembly dark mảtter cosmological theories

- and help'resolve tensions between models and óbservations

Why study UCHVCs?

- Galaxies
dark matter $+$
gas.
$+$
stars

Léo P (Giovanelli+ 2013; Rhode+ 2013) Image: HST—McQuinn+ 2015

Why study UCHVCs?

- Galaxies
dark matter
$+$
gas.
$+$
stars?

Léo P (Giovanelli+ 2013; Rhode+ 2013) Image: HST-McQuinn+ 2015

Defining a color-magnitude filter

- Select stars
likely to belong to a range of stellar populations

CMD filter technique

- Step filter through range of Local Volume distances (0.25 - 2.5 Mpc)
- Make smoothed density maps of stars selected by CMD filter and normalize to background star counts

reference

AGC 198606 - "Friend of Leo T"

Overdensity significance

- Generate random uniform distributions of stars, track distribution function of highest density; how likely this is a random superposition?

AGC 198606 - "Friend of Leo T"

