

- A: star at apogalacticon, *v* < *0*, "lag"
- B: star at perigalacticon, *v* > 0, "lead"
- C: star on circular orbit = LSR, v = 0

Sun : (*u*, *v*, *w*) = (-10, 5, 7) km/s Wait, how do we measure this??

Look specifically at Z motion (w velocity)

width of distributions = "velocity dispersion" σ

Spectral Type	Dispersion (km/s)	Scale Height (pc)
В	6	60
A	9	120
K giant	17	270
M dwarf	18	350
white dwarf	25	500

Why do σ and z increase with spectral type?

balance KE with PE for a small mass orbiting a big mass

the big mass M is a disk and has a radius *r* and surface density Σ_0

extended to a group of stars

find surface density from scale heights and velocity dispersions

Μ $\frac{1}{2}mv^2 \sim \frac{GMm}{r}$ $v^2 \sim \frac{2GM}{2}$ $M \sim \Sigma_0 \pi r^2$ $\Sigma_0 = (M_{\odot}/pc^2)$ $v^2 \sim 2\pi G \Sigma_0 r$ $\sigma_{\tau}^2 \sim 2\pi G \Sigma_0 z_0$ **Oort Limit** $\Sigma_0 \sim 2\pi G \sigma_z^2 z_0$

	50 M₀/pc²
	13 M₀/pc²
	2 M₀/pc²
ars,	5 M₀/pc²
	30 M⊙/pc²
	$30 M_{\odot}/nc^2$

Rotation Curve

a plot of circular (tangential) velocity v. radius

What does the rotation curve of a solid disk look like?

What does the rotation curve of the Solar System look like?

What do you expect the rotation curve of the Milky Way to look like?

