Magnitudes
more negative values are brighter absolute M vs, apparent magnitude m from 10 pc at the distance it is
Luminosity W brightness $W / m^{2} \quad b=\frac{L}{4 \pi d^{2}}$
a difference ot 5 mags factor of 100 in b

$$
\begin{array}{ll}
m_{1}-m_{2}=-2.5 \log _{10}\left(\frac{b_{2}}{b_{1}}\right) & m_{1}=-2.5 \log \left(b_{1}\right) \\
M-M=5 \log (d)-5 \quad \text { "distance modulus" }
\end{array}
$$

HR Diagrans vs Color-magnitude diagran (CMD) theoretical observed

galaxy (n.)

"The Galaxy
late 14c., from French galaxie or directly from Late Latin galaxias "the Milky Way" as a feature in the night sky (in classical Latin via lactea or circulus lacteous), from Greek galaxias (adj.), in galaxias kyklos, literally "milky circle," from gala (genitive galaktos) "milk" (from PIE root *g(a)lag_ "milk").

- "See yonder, lo, the Galaxy ë Which men clepeth the Milky Wey, For hit is why."
[Chaucer, "House of Fame"]
telescope straightway a vast crowd of stars presents itself to view ; many of them are tolerably large and extremely bright, but the number of small ones is quite beyond determination.

And whereas that milky brightness, like the bright- Nebulm reness of a white cloud, is not only to be seen in the clusters of Milky Way, but several spots of a similar colour shine examples faintly here and there in the heavens, if you turn the the nebola in telescope upon any of them you will find a cluster of ${ }^{\text {and Prasepe. }}$ stars packed close together. Further-and you will be more surprised at this,-the stars which have been called by every one of the astronomers up to this day nebulous, are groups of small stars set thick together in a wonderful way, and although each one of them on account of its smallness, or its immense distance from us, escapes our sight, from the commingling of their rays there arises that brightness which has hitherto been believed to be the denser part of the heavens, able to reflect the rays of the stars or the Sun.

I have observed some of these, and I wish to subjoin the star-clusters of two of these nebule. First, you have a diagram of the nebula called that of Orion's Head, in which I have counted twenty-one stars.

The second cluster contains the nebula called Presepe, which is not one star only, but a mass of more
"It is far more natural and conceivable to regard them as being not such enormous single stars but systems of many, whose distance presents them in such a narrow space that the light, which is individually imperceptible from each of them, reaches us on account of their immense multitude in a uniform pale glimmer. Their analogy with the stellar system in which we find ourselves, their shape, which is just what it ought to be according to our theory, the feebleness of their light which demands a presupposed infinite distance: all this is in perfect harmony with the view that these elliptical figures are just universes and, so to speak, Milky Ways, like those whose constitution we have just unfolded." -Immanuel Kant (1755)

Wright's Milky Way (1750)

-Caroline \& William Herschel (1785)

Star Counts
what is the spatial distribution of stars around us?

$$
\begin{aligned}
& m-M=5 \log _{r}^{d}-5 \rightarrow r=10^{\frac{1}{5}(m-M)+1} \\
& \text { constant } \\
& w r^{2}=\text { Area } \\
& d V=w r^{2} d r \\
& N(r)=w n \int_{0}^{r} r^{2} d r=\frac{1}{3} w n r^{3} \\
& N(m)=10^{0.6 m+C} \\
& \log N(n)=0.6 n+c
\end{aligned}
$$

$$
\begin{aligned}
& l(m)=l_{0} 10^{-0.4 n} m=-2.5 \log (l) \\
& d L(n)=l(n) \frac{d N(m)}{d m}=C 10^{0.2 m} \\
& L_{\text {tot }}(n)=\int_{-\infty}^{m} d L(n) d n=C \int_{-\infty}^{m} 10^{0.2 m} d=K 10^{0.2 m}
\end{aligned}
$$

Olbers' Paradox
"the sky is dark at night" Univere homogeneous al infinite

