"Metallicity" measure of chemical composition of a star, cluster, galaxy, etc.

	fraction by mass	Sun's value
hydrogen	Х	0.70
helium	Y	0.28
"metals" (Li and up)	Z	0.02

 $X + Y + Z \equiv 1$

 $[Fe/H]_{\star} = \log_{10} \frac{(Fe/H)_{\star}}{(Fe/H)_{\odot}} = \log(Fe/H)_{\star} - \log(Fe/H)_{\odot}$

 $[Fe/H]_{\odot} \equiv 0.00000$

Element	12+log(Z/H)	log(Z/H)	H/Z ratic
С	8.47	-3.53	3388
Ν	7.85	-4.15	14125
Ο	8.71	-3.29	1950
Ne	8.15	-3.85	7079
Na	6.21	-5.79	616595
Mg	7.56	-4.44	27542
AI	6.43	-5.57	371535
Si	7.51	-4.49	30903
Ca	6.32	-5.68	478630
Fe	7.48	-4.52	33113

What does it mean to have [Fe/H] = +1.0? [Fe/H] = -2.0?

)

Most stars have [Fe/H] between -4.5 and +1.0

Why do stars have different metallicities?

Spectra of Stars with Different Metal Content

Use "alpha" elements as a different indicator of metallicity— (O, Ne, Mg, Si, S, Ar, Ca, Ti) — and look at alpha/Fe ratio

Different methods of making/dispersing metals: Iron comes from core collapse (fast) AND thermal runaway (slow) supernovae. Alpha elements only come from core collapse (fast) supernovae

0.6 -0.4 $\left[\alpha/\mathrm{Fe} \right]$ 0.20 0 0.0-0.2-2.0

Looking at both measures tells you about the star formation and evolution history of a population of stars

-1.5 -1.0 -0.5 0.0[Fe/H]

Stellar Populations categorizing stars based on their metallicity

Observations:

Globular clusters are generally metal-poor

Disk stars span a range of metallicities

Open clusters are generally more metal-rich

what does this mean?

Stellar Populations categorizing stars based on their metallicity

Observations:

Globular clusters are generally metal-poor

Non-cluster stars span a range of metallicities

Open clusters are generally more metal-rich

what does this mean?

Population I	Population II
"metal-rich"	"metal-poor"
[Fe/H] > -1	[Fe/H] < -1
open clusters	globular clusters
lots in solar	not many in solar
neighborhood	neighborhood

Population III — (theoretical) population with NO metals; never observed

Metallicity correlates with color: metal-poor stars bluer metal-rich stars redder

why?

"ine blanketing": more metal absorption lines in blue part of spectrum, take out blue light preferentially

opacity: more metals means more absorption lines to catch photons. stars with higher opacity get bigger due to convection effects and cool down = redder

Lots of things affect the color of a star:

Age (blue stars are young, red stars are old) **Metallicity** (metal-rich = red, metal-poor = blue) **Dust** (makes everything red)

Galactic Coordinates

- ℓ = Galactic longitude
- *b* = Galactic latitude
- d = distance
- centered on Sun
- $X = D \cos \ell \cos b$ $Y = D \sin \ell \cos b$ $Z = D \sin b$