

Giants +

Rocky only

Rocky +

The Disk The Milky Way's dominant stellar component

 $\rho(R,z) = \rho_0 e^{-z/z_0} e^{-R/h}$

 $z_0 =$ scale height = varies by component of disk

 $h = \text{scale length} \simeq 3 \text{kpc}$

 $R_{\odot} \simeq 8 \text{ kpc} \rightarrow \text{Sun is in "outskirts"}$

total mass ~ 10¹¹ solar masses

	Z 0	[Fe/H]	age	popu
young thin disk	~50 pc	> 0.0	young	Pc
old thin disk	~300-400 pc	-0.5 — +0.3	middle-age	Pc
thick disk	~1-1.5 kpc	-1.5 — -0.4	old	Рор

How might we account for the differences in ages, metallicities, scale heights?

pink = star formation regions

ionized hydrogen

emit light in Balmer $\alpha = 3 \rightarrow 2$ transition

Interstellar Medium "the stuff between the stars"

Gas (H, He, molecules), Dust

neutral Hydrogen (HI) — cool **ionized Hydrogen** (HII) — hot **molecular Hydrogen** (H₂) — cold

Sagittarius

Galactic SWEEPS Center

Baade's Window

Scorpius

Corona Australis

Photo: Akira Fujii

hard to really study due to dust...

age = > 9 billion years mass ~ 10¹⁰ solar masses

The Bulge

metallicities: -1 < [Fe/H] < +0.5

FIG. 2.—2.2 μ m angular scale heights at fixed longitude. Scale heights for $l < 0^{\circ}$ are represented by asterisks, whereas diamonds are for scale heights at positive Galactic longitudes. The error bars represent 1 σ errors on the computed scale height.

shape probably an elongated bar

Stellar Halo

globular clusters & "field" stars

GCs ages: 9-13 Gyr metallicities: two populations young, metal-rich; old, MP distribution: two populations

field stars: also very metal-poor total mass = $10^8 - 10^9 M_{sun}$

$$n(r) = n_0 r^{-3.5}$$

 $n_0 \sim 0.2\%$ thin disk maximum