Simulating the Production of ICL in Galaxy Groups and Clusters

Craig Rudick
Case Western Reserve University
7 December, 2005
Outline

- Simulate observations of ICL
 - Simulated broadband imaging of diffuse light
- Examine the evolution of ICL
 - How does the quantity and morphology of the ICL evolve?
 - What are the mechanism(s) driving ICL production and evolution?
Simulating Observations

Luminous Particle Distribution

Smoothed Distribution

Surface Brightness Distribution
Smoothing

- Adaptive 2-D Gaussian smoothing kernel on each particle
- Width of Gaussian scaled inversely to local 3-D density
- Scaling parameter chosen to give reasonably smooth distributions
 - Too little smoothing retains artificial discreteness of particles
 - Too much smoothing destroys coherent features
Converting Mass to Luminosity

- Apply a global M/L of 5 (solar units)
 - V-band M/L of old population in local universe
- Simplifies physics
 - Gas/stellar formation not included in simulations
 - Global M/L allows direct comparison of images at all evolutionary times
 - NOT cosmological observations, but observing the evolutionary state of the groups/clusters as they would appear in the nearby universe
Presented in Technicolor

- 3 clusters
 - $\sim 10^{14}$ solar masses
 - From $z=2$ to $z=0$

All movies from this presentation can be accessed from:

http://astroweb.cwru.edu/craig/dif fuse_light/diffuse_light.html
Evolution of the ICL

- How does the ICL luminosity evolve?
 - Quantitative measures of ICL

- What causes the evolution?
 - Continual stripping by cluster potential?
 - Group accretion?
Defining ICL

- Previously used definitions:
 - Theory: unbound particles (stars)
 - Unobservable in broadband imaging
 - Observation: excess over $r^{1/4}$
 - Model dependent, not universally applicable

- We define ICL as luminosity fainter than μ_V of 26.5 mag/sq. arcsec
 - Well-defined observable
 - Radius at which ICL has unique morphology
ICL Luminosity with Time

- The fraction of luminosity at ICL surface brightness tends to increase with time.
- Increases are very stochastic and non-uniform.
- Each cluster has a unique ICL history.
Changes in ICL Luminosity

- Fractional change in luminosity per unit time
- ICL luminosity increases tend to come in short, discrete events
- Increases in ICL luminosity are highly correlated with group accretion events
Cluster 1

- Three large galaxy complexes
 - The three groups do not merge
 - Very little production of ICL
Cluster 2

- Small group crashes through large central group from bottom left to top right
 - ICL increase coincides with galaxy exiting center

Rudick, Milos, McBride 2005

Changes in ICL Luminosity, Cluster 2
Cluster 3

- Massive collapse of groups
 - Luminosity shifts to higher surface brightness as groups infall
 - Huge ICL production after event
Conclusions

- ICL luminosity tends to increase with dynamical time
- ICL luminosity increases are strongly correlated with group accretion events
- ICL features are tracers of cluster’s evolutionary history

All movies from this presentation can be accessed from:
http://astroweb.cwru.edu/craig/diffuse_light/diffuse_light.html