MASS DEPENDENCE OF GALAX **ROTATION CURVE SHAPES**

Chris Brook Ramony Cojal Fellow Universidad de La Laguna Instituto de Astrofísica de Can

Isabel Santos-Santos (UAM) Aranna di Cintio (AIP) Aaron Dutton, Andrea Macciò (NYU AD) Harley Katz (Cambridge) Federico Lelli (ESO), Stacey McGaugh (Case Western), James Shombert (U. Oregon)

Parallel chemo-dynamical galaxy evolution code Tree N-body –Dark Matter & stars:

$$\frac{\partial f}{\partial t} + \mathbf{v} \cdot \nabla f = 0$$
$$\frac{\partial f}{\partial t} \equiv \frac{\partial f}{\partial t} + \mathbf{v} \frac{\partial f}{\partial \mathbf{x}} - \frac{\partial \Phi}{\partial \mathbf{r}} \frac{\partial f}{\partial \mathbf{v}} = 0$$

potential Φ is the solution of Poisson's eqn:

$$\nabla^2 \Phi(\mathbf{r}, t) = 4 \pi G \int f(\mathbf{r}, \mathbf{v}, t) \,\mathrm{d}\mathbf{v}$$

High resolution simulations

Select a galaxy sized dark matter halo

Identify those particles in initial conditions.... The whole box is re-simulated with that region simulated in detail

Credit: A.Kravtsov, A. Klypin

N-body simulations

Klypin, Trujillo-Gomez, Primack 2012 (Bolshoi)

 $V_{out}[km/s]$

Di Cintio & Lelli 2016

Kravtsov+ 2014

Hydrodynamical simulations

Parallel chemo-dynamical galaxy evolution code Gas: Smoothed Particle Hydrodynamics (SPH)

Parallel chemo-dynamical galaxy evolution code Gas: Cooling Rates

UV background radiation (Haardt & Madau 96)

From previous generations of massive stars and quasars

Parallel chemo-dynamical galaxy evolution code Gas: Star Formation

Star Formation Rate- $\propto p^{1.5}$ Kennicut-Schmidt law (empirical)

Parallel chemo-dynamical galaxy evolution code Energy Feedback

$$\Delta E_{\mathrm{s},i} = \frac{m_i W(|\boldsymbol{r}_i - \boldsymbol{r}_{\mathrm{s}}|, h_{\mathrm{s}}) \Delta E_{\mathrm{s}}}{\sum_{j=1}^N m_j W(|\boldsymbol{r}_j - \boldsymbol{r}_{\mathrm{s}}|, h_{\mathrm{s}})}$$

Parallel chemo-dynamical galaxy evolution code Energy Feedback

Supernova Blastwave McKee & Ostriker 1977 see Stinson et al. 2006

$$\Delta E_{\text{SN},i} = \frac{m_i W(|\boldsymbol{r}_i - \boldsymbol{r}_s|, h_s) \Delta E_{\text{SN}}}{\sum_{j=1}^N m_j W(|\boldsymbol{r}_j - \boldsymbol{r}_s|, h_s)}$$
$$R_E = 10^{1.74} E_{51}^{0.32} n_0^{-0.16} \tilde{P}_{04}^{-0.20} \text{pc}$$

 $E_{\rm SN} = 10^{51} \,{\rm erg}, n_0$ is the ambient hydrogen density $\tilde{P}_{04} = 10^{-4} P_0 k^{-1}$ where P_0 is the ambient pressure k is the Boltzmann constant

$$t = 10^{6.85} E_{51}^{0.32} n_0^{0.34} \tilde{P}_{04}^{-0.70}$$
 yr

JES

Parallel chemo-dynamical galaxy evolution code metal enrichment: H,He,O,Fe,C,N,Si,Ne,Mg

TWINLAB

MAGN

Natural Capsules

Researchers hope to replace silicon microchips with diamonds one day (CNN)

simulations

The angular momentum "problem"

Steinmetz & Navarro 2000

Stellar Mass-Halo Mass

(Moster et al. 2010, Guo et al. 2010)

Simulated rotation curves

The "CGM problem"

More generally, can the observed metal enrichment of the Universe exist in a CDM model?

Let us "tune" (couple) feedback to match the CGM of observed galaxies

Stinson et al. 2013

Matching Observed Scaling Relations

Brook et al. 2012

Gasoline CLUES

Magicc simulations (individual isolated galaxies)
Magicc CLUES simulation WMAP₃ 4096

Santos-Santos et al. 2016

MaGICC: Mass distribution of all components

Rotation Curves & Dark Matter Profiles

Simulations have slowly rising rotation curves: Dark matter cores!

Santos-Santos 2016

Inner slope dependence on M_{*}/M_{halo}

Dark matter profiles determined by two opposite effects: energy from Sne vs Increasing gravitational potential

Di Cintio+14a

Profile shapes paramatarised by M*/Mhalo

A double power law profile

$$\rho(r) = \frac{\rho_s}{\left(\frac{r}{r_s}\right)^{\gamma} \left[1 + \left(\frac{r}{r_s}\right)^{\alpha}\right]^{(\beta - \gamma)/\alpha}}$$

 γ inner slope

 β outer slope

 α sharpness of transition Constrained via M*/M_{halo}

NYUAD - 19/04/2016

Katz, H et al. 2017

Rotation Curve Shapes: Variation

Santos-Santos et al. in prep

Rotation Curve Shapes: Variation

Santos-Santos et al. in prep

Conclusions

The allure of CDM is its ability to self-consistently explain a large number of observed galaxy properties, many of which are independent