Self-interacting Dark Matter and Dwarfs

James Bullock (UC Irvine)

LCDM

Normal Matter 5%

Cold Dark Matter 25% Cosmological constant (A) 70%

5%

DRIVE-BY TRUCKERS

Three Generations of Matter

What if DM isn't so simple?

Shelton & Zurek

SUSY Breaking Hidden X

- A smorgasbord of particles and interactions?

Dark photons (Ackerman et al. 08)
Dark atoms (Kaplan et al. 09)
Kaplinghat, Tulin, Yu (10,14ab,15ab)

- DM could be "hidden" w/no SM couplings (all evidence gravitational)

Dark Matter Phenomenology

Cold Dark Matter? Warm Dark Matter? Self-interacting Dark Matter? Ultra-light Scalar Field Dark Matter? Superfluid Dark Matter? MOND?

Self Interacting Dark Matter

Spergel & Steinhardt (2000)

$$\Gamma =
ho_{
m dm} \left(rac{\sigma}{m}
ight) v_{
m rms}$$
 if rate is > 1 / T_{Hubble} interesting things happen

$$\frac{\sigma}{m} \sim 1 \, {\rm cm}^2/g$$

most models have velocitydependent cross sections

(Elbert+17,15; Rocha+13; Vogelsberger+12; Zavala+13; etc.).

SIDM vs. CDM same large scale structure same DM halo mass functions

similar substructure - cored density profiles

Rocha+2012

How does SIDM work?

One interaction on average over halo age

SIDM: Solves TBTF & Cusp/Core

Spergel & Steinhardt (00); Vogelsberger+12; Rocha+13; Zavala+13

SIDM profiles can be predicted analytically (Kaplinghat+16)

What About Feedback?

Star formation Radiation pressure

Photo-Ionization

Garrison-Kimmel+2017

Stellar winds

Supernovae

FIRE 2 physics

Hopkins+2017 Wetzel+2017 Fitts+2017

Need >3.e6M_{sun} stars to affect DM density profile in CDM

Also: Governato+12; Penarrubia+12; Garrison-Kimmel+13, **Di Cintio+14**, Tollet+15

Agreement among frienemies

JSB & Boylan-Kolchin, ARAA, 2017

SIDM vs. CDM: Full FIRE physics

Falsifiable Prediction for SIDM

SIDM: baryon cross-talk

CDM Only	CDM, Fiducial Disk	CDM, Compact Disk	101
5 kpc			10^{0} $\stackrel{()}{\text{pc}^{-3}}$
SIDM Only	SIDM, Fiducial Disk	SIDM, Compact Disk	${ m Density} \left({{ m M}_{_{ m O}}} ight)$
Elbert+2016			10^{-2}

This is not feedback: it's about the potential

Radial Acceleration Relation

See Di Cintio & Lelli 2016; Keller & Wadsley 2016; Ludlow+16; Desmond 2017; Navarro+17 for CDM takes on RAR

Massive galaxies - baryons dominate at small r

"The origin of the mass discrepancy-acceleration relation in ACDM"

Predicted density profiles for dark matter

Robles, Pawlowski, JSB 2017

Predicted $V_c(r)$ for dark matter

Predicted g(r) from dark matter

 $M_{star} = 6e10 M_{sun}$ $M_{star} = 5e9 M_{sun}$ $M_{star} = 5e8 M_{sun}$

M_{star} = 2e7 M_{sun}

Robles, Pawlowski, JSB 2017

CDM

Robles, Pawlowski, JSB 2017

SIDM

Robles, Pawlowski, JSB 2017

SIDM "hooks"

 $M_{star} = 6e10 M_{sun}$ $M_{star} = 5e9 M_{sun}$ $M_{star} = 5e8 M_{sun}$ $M_{star} = 2e7 M_{sun}$

Emergent gravity: upward hooks!

Testing Verlinde's emergent gravity with the radial acceleration relation

Federico Lelli,^{1*} Stacy S. McGaugh^{2*} and James M. Schombert^{3*}

¹European Southern Observatory, Karl-SchwarZschild-Strasse 2, Garching bei München D-85748, Germany

²Department of Astronomy, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA

³Department of Physics, University of Oregon, Eugene, OR 97403, USA

SIDM-type relation for DDO154

 $M_b = 10^{8.6} M_{sun}$

Do see hooks in the data (sometimes)

 $M_b = 10^{8.6} M_{sun}$

Looks like a hook

 $M_b = 10^{8.7} M_{sun}$

Hook!

 $M_b = 10^{9.7} M_{sun}$

Sky hook

 $M_b=\,10^{9.8}\;M_{sun}$

Baby hook

 $M_b = 10^{7.7} \; M_{sun}$

Upwards hook?

 $M_b = 10^{9.8} M_{sun}$

Massive galaxies — no hooks

 $M_b = 10^{10.6} M_{sun}$

SIDM-type relation for DDO154

But... feedback-driven CDM cores likely create "hooks" — need to explore

- SIDM is an interesting, predictive alternative to CDM
 - Can "solve" cusp/core and TBTF problems naturally
- Predictions are relatively robust to feedback "FIRE proof"
 - Predicts cored profiles in the smallest dwarfs
 - unlike many CDM+feedback models
- The galaxy-by-galaxy RAR may provide an interesting avenue for testing SIDM & discriminating from CDM
- Hooks in the RAR?

SIDM <=> baryon cross talk * much more diversity in rotation curves

Diversity in SIDM correlates with baryonic content