The consequences of the MOND external field effect for cluster galaxies

Graeme Candlish Universidad de Valparaíso

graeme.candlish@ifa.uv.cl

Dwarf Galaxies on the Shoulders of Giants June 8th 2017

The MOND paradigm

- Weak field limit modification of gravity
- Dark matter in galaxies → modified gravity
 - for review see Famaey & McGaugh 2012

The MOND paradigm

- MOdified Newtonian Dynamics (MOND, Milgrom 1983)
 - Tensor-Vector-Scalar (Bekenstein & Milgrom 1984)
 - Generalized Einstein-Aether (Zlosnik, Ferreira & Starkman 2007)
 - Bimetric MOND (Milgrom 2009)
- Emergent gravity (Verlinde 2016)
 - holographic principle
 - but see Pardo, arXiv:1706.00785
- Non-local gravity (Deffayet, Esposito-Farese & Woodard 2007)
- Spacetime scale invariance at low accelerations?

Non-relativistic MOND formulations

• Aquadratic Lagrangian (AQUAL) formulation of Bekenstein & Milgrom (1984):

$$\nabla \cdot \left[\mu \left(\frac{|\nabla \phi|}{a_0} \right) \nabla \phi \right] = 4\pi G \rho$$

Non-relativistic MOND formulations

Quasi-linear (QUMOND) formulation of Milgrom (2010):

$$\nabla^2 \phi^N = 4\pi G \rho \qquad \nabla^2 \phi = \nabla \cdot \left[\nu \left(\frac{|\nabla \phi^N|}{a_0} \right) \nabla \phi^N \right]$$

MOND cosmological and galaxyscale simulations

- MOND Numerical codes:
 - AQUAL:
 - Amiga MOND (Llinares, Knebe & Zhao, 2008)
 - N-MODY (Londrillo & Nipoti, 2009)
 - QUMOND:
 - PoR (Lüghausen, Famaey, Kroupa, 2015)
 - Both:
 - RAyMOND

(Candlish, Smith, Fellhauer, 2015)

• Based on RAMSES (Teyssier 2002)

RAMSES

 Multigrid particle-mesh N-body/hydrodynamics solver (Teyssier 2002)

Extended stencil

- 6-point stencil in standard RAMSES
- Extended to 18-point stencil for MOND equation

Non-linear multigrid and adaptive mesh refinement

Grid Hierarchy

Challenges of MOND simulations

- AQUAL → non-linear solver, longer convergence time
- QUMOND \rightarrow second solution of the Poisson equation
- Boundary conditions
 - asymptotically logarithmic MOND potential
- Generation of initial conditions

External field effect

• Whether system is in MOND regime depends on the *total* acceleration

$$\nabla \cdot \left[\mu \left(\frac{|\nabla \phi|}{a_0} \right) \nabla \phi \right] = 4\pi G \rho$$

External field effect

• Whether system is in MOND regime depends on the *total* acceleration

The external field effect

- Background potential modifies internal dynamics
- Violation of the strong equivalence principle
- Non-trivial effects:
 - stellar systems in background fields
 - star clusters, satellite galaxies, etc.

- Initial conditions:
 - generated by DICE code (V. Perret)
 - aim for equilibrium *isolated* models
- Evolved in isolation for ~10 Gyr to check stability
- MOND models initially as Newtonian, minus the DM halo

- Cluster modelled as analytic *density* (not potential) in RAyMOND
 - included in solver, EFE present
- Background static potential
 - Hernquist model
 - r_s = 200 kpc, M = 7.8e14 Msol
- MOND models
 - density modified to match Newtonian potential
- Orbits of ~5 Gyr within cluster

- Two galaxy models:
 - high mass (10¹¹ Msol stellar, 3 x 10¹² Msol DM)
 - low mass (10⁹ Msol stellar, 10¹¹ Msol DM)
- Orbits:
 - weak tides (almost circular, ~1 Mpc clustercentric distance)
 - moderate tides (pericenter ~535 kpc)
 - strong tides (pericenter ~124 kpc)
- Galaxy inclination relative to orbit (disk parallel to x-y plane):
 - perpendicular (orbit in x-z plane)
 - parallel (orbit in x-y plane), retrograde and prograde motion

- Background *analytic* potential may be added (i.e. specified accelerations for the particles)
- RAyMOND modified:
 - add background analytic accelerations to N-body dynamics of the galaxy
 - Background accelerations NOT included in gravity solver: no EFE (tides maintained)
 - Additional MOND models run without EFE

Orbits

Newtonian, moderate tides, high mass, x-z orbit

MONDian, moderate tides, high mass, x-z orbit

MONDian, moderate tides, high mass, x-z orbit, no EFE

Radial density evolution: high mass

Radial density evolution: low mass

Evolution of halo mass loss

Evolution of disk mass loss

Evolution of disk mass loss

Summary

- The non-linear nature of MOND gravity strongly motivates the use of numerical simulations
- The external field effect may offer a means to find tests of MOND
 - galaxy evolution in MOND is still a largely unexplored area
- MOND galaxies within clusters may generally be more tidally disrupted than their LCDM counterparts

Questions and future prospects

- A full MOND cosmology?
- MOND cosmological simulations, velocity field
 - Candlish 2016, see also Katz et al. 2015
 - Angus et al. 2011, 2013; Llinares et al. 2008, 2009;
 Knebe & Gibson 2004
- EMOND: remove the remaining mass discrepancy in galaxy clusters?
- Relativistic theories: further MOND effects on non-stationary phenomena?

Questions and future prospects

What about Λ ?!