Dark Matter as a Hypothetical Object: The Application of Methodological Tools to Contemporary Cosmology

> Anastasiia Lazutkina a.k.lazutkina@gmail.com

Faculty of Philosophy, Lomonosov Moscow State University

See Lazutkina, A. (2017). "Theoretical terms of contemporary cosmology as intellectual artifacts" in Franz, J. & Berr, K. (eds.) *Welt der Artefakte*. Berlin: Frank & Timme. 63-70.

A simple flowchart for the interpretation of any astronomical observation

This flowchart was made "tongue-in-cheek" by Stacy McGaugh, but as a description of the current situation in cosmology it is true enough

Theory of Truthlikeness

- Science approximates reality: previous theories are replaced by new theories, which are closer to the truth (more *truthlike*)
- Idea introduced by Karl Popper; a leading approach (the *likeness* approach) based on work of Ilkka Niiniluoto
- Truthlikeness can be measured in relation to a concrete cognitive problem
- Assumption: our observations are true

- d (x, y) = | x-y |
- Truthlikeness = 1/1 + d(x, y)

	V1/2 obs	V1/2 MOND	V1/2 ACDM	Truthlikeness MOND	Truthlikeness ACDM
Fornax	20.1	20.8	25.5	0.59	0.16
Carina	11.3	9.9	13.8	0.42	0.29
Leo I	15.8	15.9	16.2	0.9	0.71
Leo II	11.3	11.6	12.8	0.77	0.4
Sculptor	15.8	14.9	15.7	<mark>0.53</mark>	<mark>0.9</mark>
Draco	15.6	15.1	14.7	0.67	0.53
Sextans	13.5	11.8	18.2	0.37	0.18
Ursa Minor	16.3	15.4	16.6	<mark>0.53</mark>	<mark>0.77</mark>

Principle of correspondence

- Generalization and refinement of Niels Bohr's idea
- E.K. Voishvillo :
- The old theory is not a special case of the new one, it becames false in the light on new theory
- The statements of the old theory are reformulated by adding new conditions, thereby narrowing the scope of its application, and deleting implied false part from it
- Modified version of the old theory is a special case of the new theory

Principle of correspondence

Newton's law $\forall x \forall v \forall m \forall t \forall f((V(v,x,t) \& M(m,x) \& F(f, x, t)) \rightarrow F = d (mv)/dt)$

MOND:

 $\forall x \forall v \forall m \forall t \forall f((V(v,x,t) \& M(m,x) \& F(f, x, t) \rightarrow F = m\mu(a/a_0)a)$

Newtonian law with the condition **D** becomes a special a case of MOND

• **D**: $\mu(a/a_0) \approx 1$

 $\forall x \forall v \forall m \forall t \forall f((V(v,x,t) \& M(m,x) \& F(f, x, t) \& D) \rightarrow F = d (mv)/dt)$

- Alexander, S. G. et al. (2017). "MOND Calculations of Bulk Dispersions and Radial Dispersion Profiles of Milky Way and Andromeda Dwarf Spheroidal Galaxies." *Astrophysical Journal* 835: 233–246.
- Fattahi, A. et al. (2016). "The cold dark matter content of Galactic dwarf spheroidals: no cores, no failures, no problem." <<u>https://arxiv.org/abs/1607.06479</u>>.