The Radial Acceleration

Relation of Galaxies

Federico Lelli (ESO Fellow)

Robert Gendler

In collaboration with: Stacy McGaugh (Case Western Reserve University) James Schombert (University of Oregon) Marcel Pawlowski (University of California - Irvine)

Outline:

1. The SPARC Galaxy Database

2. Results for Late-Type Galaxies (S & dIrr)

3. Results for Early-Type Galaxies (E, S0, dSph)

Federico Lelli (ESO fellow)

The Radial Acceleration Relation of Galaxies

Database for 175 late-type galaxies (S & dIrr): www.astroweb.cwru.edu/SPARC Lelli, McGaugh, Schombert 2016, AJ

Federico Lelli (ESO fellow)

1. The SPARC Galaxy Database

- HI Rotation Curves for 175 galaxies
 - 30 years of HI obs with WSRT, VLA, ATCA.
 - PhD theses from the University of Groningen Begeman 1987; Broeils 1992; Verheijen 1997; de Blok 1997; Swaters 1999; Noordermeer 2005; Lelli 2013 + other studies
 - Hybrid Hα/HI rotation curves for ~30% sample McGaugh+2001; Kuzio de Naray+2006, 2008 + other studies.

- HI Rotation Curves for 175 galaxies
 - 30 years of HI obs with WSRT, VLA, ATCA.
 - PhD theses from the University of Groningen Begeman 1987; Broeils 1992; Verheijen 1997; de Blok 1997; Swaters 1999; Noordermeer 2005; Lelli 2013 + other studies
 - Hybrid Hα/HI rotation curves for ~30% sample McGaugh+2001; Kuzio de Naray+2006, 2008 + other studies.
- Homogeneous Photometry at 3.6 µm
 - Optimal tracer of the stellar mass: $M_* = \Upsilon_* L$
 - Smaller variations of Υ_* in the NIR than optical

Bell & de Jong 2001; Martinsson+2013; Meidt+2012, 2014; McGaugh & Schombert 2014; Schombert & McGaugh 2014; Querejeta+2015; Röck+2015; Herrmann+2016; Norris+2016.

Widest possible range of disk properties

Federico Lelli (ESO fellow)

1. The SPARC Galaxy Database

Example: High-Mass HSB Spiral

 $\nabla^2 \Phi_{\rm bar}({\rm R},z) = 4\pi G \rho_{\rm bar}({\rm R},z)$

- Vertical Structure: Disks: $exp(-z/h_z)$ with $h_z \propto h_R$ Bulges: spherical symmetry
- Stellar mass-to-light ratio: $\Upsilon_* = 0.5 \ M_{\odot}/L_{\odot} \text{ for disks}$ $\Upsilon_* = 0.7 \ M_{\odot}/L_{\odot} \text{ for bulges}$

Federico Lelli (ESO fellow)

1. The SPARC Galaxy Database

Example: Low-Mass LSB Dwarf

 $\nabla^2 \Phi_{\rm bar}({\rm R,z}) = 4\pi G \rho_{\rm bar}({\rm R,z})$

- Vertical Structure: Disks: $exp(-z/h_z)$ with $h_z \propto h_R$ Bulges: spherical symmetry
- Stellar mass-to-light ratio: $\Upsilon_* = 0.5 \ M_{\odot}/L_{\odot} \ \text{for disks}$ $\Upsilon_* = 0.7 \ M_{\odot}/L_{\odot} \ \text{for bulges}$

Federico Lelli (ESO fellow)

1. The SPARC Galaxy Database

Baryonic Tully-Fisher Relation (BTFR)

<u>GOLDEN RULE</u>: As the data quality increases, the BTFR scatter decreases! <u>Upper limit</u> on the <u>intrinsic scatter</u>: <0.11 dex (~25%)

Federico Lelli (ESO fellow)

1. The SPARC Galaxy Database

Central Density Relation (for $R \rightarrow 0$)

Federico Lelli (ESO fellow)

1. The SPARC Galaxy Database

2. Radial Acceleration Relation of Late-Type Galaxies

McGaugh, Lelli, Schombert 2016, PRL Lelli, McGaugh, Schombert, Pawlowski 2017, ApJ

Federico Lelli (ESO fellow)

Local link between baryons and DM

Federico Lelli (ESO fellow)

2. Radial Acceleration Relation of LTGs

Local link between baryons and DM

Federico Lelli (ESO fellow)

2. Radial Acceleration Relation of LTGs

Very different galaxies but ONE relation

Federico Lelli (ESO fellow)

Building up the Radial Acceleration Relation

Large Diversity in Rotation Curves

Regularity in Acceleration Plane

Lelli, McGaugh, Schombert, Pawlowski 2017, ApJ

Video available at astroweb.cwru.edu/SPARC/

Building up the Radial Acceleration Relation

Large Diversity in Rotation Curves

Regularity in Acceleration Plane

Lelli, McGaugh, Schombert, Pawlowski 2017, ApJ

Video available at astroweb.cwru.edu/SPARC/

Is There Any Intrinsic Scatter?

Uncertainties drive scatter!

 $err(g_{bar}) \rightarrow \Upsilon_{\star}$, 3D geometry $err(g_{obs}) \rightarrow Dist, Inc, V_{rot}$

 $\sigma_{obs}^{2} = \sigma_{err}^{2} + \sigma_{int}^{2}$

 $\sigma_{\rm obs}$ \rightarrow measured rms

 $\sigma_{\rm err} {\rightarrow}$ error propagation

 $\sigma_{\rm int} {\rightarrow}$ consistent with zero!

McGaugh+2016, PRL; Lelli+2017, ApJ

Federico Lelli (ESO fellow)

MCMC Fits to Individual Galaxies

Federico Lelli (ESO fellow)

Three Laws of Galactic Rotation:

1. Global Law: $V_{flat} \propto M_{bar}$

2. Central Law: $\Sigma_{dyn}(0) \propto \Sigma_{bar}(0)$

3. Local Law: $g_{obs}(R) \propto g_{bar}(R)$

Only inputs are the Poisson Equation and the M_*/L . Observed scatter is tiny. No residual correlations.

Federico Lelli (ESO fellow)

We can infer the DM distribution from g_{bar}!

From the observations: $g_{DM} = g_{tot} - g_{bar} = F(g_{bar})$

For a spherical DM halo: $M_{DM}(R) = \frac{R^2}{G}F(g_{bar})$

For our fiducial fitting F: $M_{DM}(R) = \frac{R^2}{G} \frac{g_{bar}}{\exp(\sqrt{g_{bar}/g_0}) - 1}$

Purely empirical relations (accuracy ~30%).

Federico Lelli (ESO fellow)

3. Radial Acceleration Relation of Early-Type Galaxies

Lelli, McGaugh, Schombert, Pawlowski 2017, ApJ

Federico Lelli (ESO fellow)

16 Rotating ETGs with outer HI rings/disks

ATLAS^{3D} project: Cappellari+2010; Serra+2012, 2016

Lelli+2017, ApJ

Federico Lelli (ESO fellow)

9 Non-Rotating ETGs with X-ray Halos

Humphrey+2006, 2008, 2009, 2011, 2012

Lelli+2017, ApJ

Federico Lelli (ESO fellow)

Dwarf Spheroidals in the Local Group

Federico Lelli (ESO fellow)

3. Radial Acceleration Relation of ETGs

One Law to Rule Them All!

Federico Lelli (ESO fellow)

3. Radial Acceleration Relation of ETGs

1. End product of galaxy formation in ΛCDM

2. New Dynamical Laws (Milgromian Dynamics)

3. New Physics in the Dark Sector / Dark Forces

Federico Lelli (ESO fellow)

The Radial Acceleration Relation of Galaxies

1. End product of galaxy formation in ACDM Good: Mean relation is OK (Di Cintio & Lelli 2016; Desmond 2017; Ludlow+2017). Bad: Complex, stochastic process BUT galaxies are simple (σ_{int} <10%!).

2. New Dynamical Laws (Milgromian Dynamics)

3. New Physics in the Dark Sector / Dark Forces

Federico Lelli (ESO fellow)

The Radial Acceleration Relation of Galaxies

1. End product of galaxy formation in Λ CDM Good: Mean relation is OK (<u>Di Cintio & Lelli 2016</u>; Desmond 2017; Ludlow+2017). Bad: Complex, stochastic process BUT galaxies are simple (σ_{int} <10%!).

2. New Dynamical Laws (Milgromian Dynamics)
Good: MOND predicted the RAR before the data existed (Milgrom 1983)
Bad: CMB? Large-scale structure of the Universe? Galaxy clusters?

3. New Physics in the Dark Sector / Dark Forces

1. End product of galaxy formation in Λ CDM Good: Mean relation is OK (<u>Di Cintio & Lelli 2016</u>; Desmond 2017; Ludlow+2017). Bad: Complex, stochastic process BUT galaxies are simple (σ_{int} <10%!).

2. New Dynamical Laws (Milgromian Dynamics)
 Good: MOND predicted the RAR before the data existed (Milgrom 1983)
 Bad: CMB? Large-scale structure of the Universe? Galaxy clusters?

3. New Physics in the Dark Sector / Dark Forces
Good: Hybrids ACDM + MOND (Dark Fluids: Zhao & Li 2010; Khoury 2015)
Bad: 'Good' is good by construction. New predictions?

Additional Slides

Federico Lelli (ESO fellow)

Residuals vs Local Galaxy Properties

Federico Lelli (ESO fellow)

Residuals vs Global Galaxy Properties

Federico Lelli (ESO fellow)

RAR from Hydrodynamical Simulations

A similar relation is found but the real problem is the **TIGHTNESS**! $\sigma_{obs}^{2} = \sigma_{int}^{2} + \sigma_{err}^{2}$ Can't forget errors! Analytic Models: Di Cintio & Lelli 2016 Navarro+2016 Desmond 2017

Numerical Sims:

Keller & Wadsley 2016 Ludlow+2017 Tenneti+2017

Federico Lelli (ESO fellow)

RAR Scatter from Semi-Empirical Models

Each SPARC galaxy is associated to a DM halo by matching relative abundances (see also DiCintio & Lelli).

Multiple realizations taking into account sample variance and observational errors.

Fiducial model over-predicts the observed scatter!

Alternative versions of the RAR

Federico Lelli (ESO fellow)

HI observations: Rotation Curves

Federico Lelli (ESO fellow)

Additional Slides

Spitzer [3.6] Photometry: Stellar Mass

 $\Upsilon_*\text{-color relations from SPS models}$ (McGaugh & Schombert 2014)

- Υ_* shows smaller variations at [3.6] than optical bands
- Details depend on SPS model and assumed IMF
- Most recent models: $\Upsilon_{[3.6]}$ is nearly constant for LTGs (Meidt+2014; Schombert & McGaugh 2014; Norris+2016)

Dwarf Spheroidals (dSphs) in the Local Group

Satellites of MW and M31: extremely low masses, sizes, densities, and accelerations!

"Classical" dSphs discovered between the '40 and the '80. → well-studied properties

"Ultrafaint" dSphs discovered during the past ~10 years with SDSS, DES and other surveys → properties remain uncertain

Federico Lelli (ESO fellow)

RAR vs Verlinde's Emergent Gravity

(3) residual correlations with radius

Federico Lelli (ESO fellow)