

TIDAL DWARF GALAXIES IN COSMOLOGICAL SIMULATIONS

SYLVIA PLOECKINGER Leiden Observatory

WITH K. SHARMA, J. SCHAYE

AND THE EAGLE TEAM

OVERVIEW OF PROPERTIES OF TDG IN A LCDM UNIVERSE

mass,	star	dark	metallicity	
size	formation	matter		
as dwarf galaxies	active,	none bound	increased for	
	young stars	to TDG	stellar mass	

How many old TDGs do we expect in LCDM?

SURVIVAL TIMESCALE

FORMATION RATE

SURVIVAL TIMESCALE

OBSERVATIONS

SIMULATIONS

ANALYTICAL

Duc et al. (2014)

Bournaud & Duc (2006) Yang et al. (2014)

Ploeckinger (2015)

SURVIVAL TIMESCALE: CAN THE TIDAL FIELD STABILISE THE YOUNG GAS-RICH TDG?

GAUSS' LAW OF GRAVITY

$$\oint_{\partial V} \vec{g} \cdot d\vec{A} = -4\pi G M_{\rm enc}$$

Ploeckinger et al. (2015), Ploeckinger (2015)

SURVIVAL TIMESCALE: CAN THE TIDAL FIELD STABILISE THE YOUNG GAS-RICH TDG?

Ploeckinger (2015)

SURVIVAL TIMESCALE: CAN THE TIDAL FIELD STABILISE THE YOUNG GAS-RICH TDG?

8

Ploeckinger (2015)

FORMATION OF TDGS

Bournaud & Duc (2006) (see also e.g. Fouquet et al. 2012, Yang et al. 2014)

next step: cosmological (LCDM) context

THE EAGLE SIMULATIONS (PI: J. SCHAYE)

Evolution and Assembly of GaLaxies and their Environments

CALIBRATED GALAXY PROPERTIES IN EAGLE

> 10000 simulated galaxies: statistical comparison with observations

GALAXY STELLAR MASS FUNCTION

GALAXY SIZES

no calibration on TDGs!

Schaye et al. (2015)

GALAXY POPULATION IN EAGLE - morphology

Correa et al. (arXiv:1704.06283)

GALAXY POPULATION IN EAGLE

Trayford et al. (arXiv:1705.02331)

GAS DISKS IN EAGLE

Bahé et al. (2016)

15

EAGLE HIGH-RES BOXES

Name	L (cMpc)	Ν	(M_{\odot})	$m_{\rm dm}$ (M _{\odot})	$\epsilon_{\rm com}$ (comoving kpc)	ϵ_{prop} (pkpc)
L025N0376	25	376 ³	1.81×10^{6}	9.70×10^{6}	2.66	0.70
L025N0752	25	752 ³	2.26×10^{5}	1.21×10^{6}	1.33	0.35
L050N0752	50	752 ³	1.81×10^{6}	9.70×10^{6}	2.66	0.70
L100N1504	100	1 50 4 ³	1.81×10^6	9.70×10^{6}	2.66	0.70

Ref-L025N0752

Recal-L025N0752

16

Schaye et al. (arXiv:1705.02331)

The public EAGLE database

McAlpine et al. (2016)

EAGL	E Database
Documentation CREDITS/Acknowledgments News	Welcome Sylvia Ploeckinger. Streaming queries return unlimited number of rows in CSV format and are cancelled after 1800 seconds. Browser queries return maximum of 1000 rows in HTML format and are cancelled after 90 seconds.
Public Databases Eagle Private (MyDB) Databases Sploeckinger_db (rw)	
	Query (stream)

SUBFIND algorithm run on all particle types! Merger trees (Qu et al. 2017)

http://icc.dur.ac.uk/Eagle/database.php

How many TDGs are expected in the high-res boxes?

>1cm⁻³ **ADDITIONAL CHALLENGES** TEMPERATURE 42 ARTIFICIAL PRESSURE FLOOR STOCHASTIC S T A R FORMATION 0 0 0 0 TPUT U W Ο FREQUENCY O R S N A P S H O T S F LOG DENSITY [cm⁻³]

Step 1:

Use the public EAGLE database to find dark matter free substructures outside the host galaxy disks

	2	≤
$M_{\rm TDGC, gas}$	$10^7 { m M}_{\odot}$	_
$M_{\mathrm{TDGC},\star}$	$2.26 \times 10^5 M_{\odot}$	-
$M_{\rm TDGC, DM}$	0	0
$M_{\mathrm{TDGC,BH}}$	0	0
$d_{\mathrm{TDGC-host}}$	$2 \times R_{\rm h, gas}$	$\min(20 \times R_{h,gas}, 200 \text{ pkpc})$
$ar{d}_{ ext{TDGC-host, tb}}$	-	$min(2 \times R_{h,gas}, 70 \text{ pkpc})$
$M_{ m host,gas}$	$10^9 M_{\odot}$	-

Step 2: Trace the most bound particles of the identified TDGC back to the previous snapshot

Results

21

Another TDGC in the same galaxy pair

22

Ploeckinger et al. (in prep.)

Complicated interaction geometries with multiple galaxies involved

Formation of TDGCs (or GCs?) at high redshift

Formation of TDGCs in low mass ratio interactions

Baryonic mass ratio: 1:13, Gas mass ratio : 1:6

TDG particles are at larger distances to the host galaxy at the next snapshot

TDG formation in high-speed encounters

relative velocity: 430 km/s; do not fully merge until redshift 0

Mass-metallicity relation

Ref-L025N0752

Recal-L025N0752

Ploeckinger et al. (in prep.)

Another interesting object:

What do we need to constrain the formation rate of TDGs from cosmo simulations better?

- higher resolution for better sampling of star formation
- no / lower EOS to trace the collapse further
- reversed merger trees to study the antihierarchical structure formation (GCs, TDGs, ram pressure stripped DGs)
- better sub halo identification during major mergers