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Dynamical Friction Intro....

For a perturber of mass M moving at velocity V through a halo of much smaller

particles of density ρ and Maxwellian isotropic velocity dispersion σ,

FDF = −4πlnΛG2ρM2 A(X)

V 2 .

Where Λ = bmaxV
2/(GM) and A(X) = erf(X)− 2Xe−X

2

/π1/2, where the variable

X = V/(
√

2σ). For stars moving at the circular equilibrium velocity of an isothermal

dark matter halo, X = 1, A(X) = 0.428 and ρ = V 2/(4πGR2), R the orbital radius of

the star in question, yielding:

FDF = −0.428lnΛ
GM2

R2
.
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Dynamical Friction Intro....

For M on a circular orbit the force is tangential and the torque is given by:

dL

dt
=
FDFR

M
= −0.428lnΛ

GM

R

Assuming circular orbits, tight spirals, L = RV yields:

V
dR

dt
= −0.428lnΛ

GM

R

and hence, ∫ 0

Ri

RdR = 0.428
lnΛGM

V

∫ 0

τDF

dt

τDF =
1.17R2

iV
lnΛGM
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Dynamical Friction Intro....

For lnΛ = 10 and going to Astronomical units,

τDF = 6.6× 106

(
R

kpc

)2(
V

250km/s

)(
M�

M

)
Gyr

Which is interesting for 106M� and above objects moving in the halo of MW type

galaxies, but irrelevant for stars! But notice R2V dependence...

Taking lnΛ = 15 and changing units....

τDF = 1.7
(

R
1kpc

)2 (
V

km/s

)(
104M�
M

)
Gyr

Which removes GCs in dSphs !
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Dynamical Friction Intro....

...unless you change the isothermal (or cuspy) profile for a cored one....

where you change from τDFiso = 1.7
(

R
1kpc

)2 (
V

km/s

)(
104M�
M

)
Gyr to an exponential

decay with timescale:

τDFcore =
(Vc/kms

−1)(rc/kpc)
2

3(M/105M�)lnΛ
Gyr

...as confirmed numerically by e.g. Goerdt et al. (2006) and S. Inoue (2009)

X. Hernandez & G. Gilmore (1998) MNRAS 297, 517 , Sanchez-Salcedo et al. (2006) MNRAS 370, 1829.
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Decay of Wide Binaries in dSphs

Not only will the orbit of the binary about the galaxy decay, but in the presence of

dark matter, each component of the binary itself will be subject to dynamical friction,

leading to a tightening of the binary.

We can approach the problem by noting that the presence of each component of the

binary will result in a local enhancement of dark matter.

As these enhancements are turning, the dark matter distribution acquires angular

momentum, which must necessarily come from the tightening of the binary.

We begin by considering a single component of the binary, at rest with respect to a

locally constant dark matter distribution of density ρ0 and Gaussian velocity

dispersion σ.

The presence of the star will result in a local perturbation to the dark matter

distribution function f(r, v) = f0(v) + εf1(r, v).
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Decay of Wide Binaries in dSphs

The full distribution function will satisfy the Boltzmann equation:

∂f

∂t
+ v · ~5f − ~5Φ · ~5vf = 0.

Forcing a stationary solution and taking Φ0 = 0, Φ1(r) = −GM
r

, we obtain to first

order for the radial component:

v
∂f1

∂r
=
GM

r2

∂f0

∂v
=
−v
σ2

GM

r2
f0,

where we used f0(v) ∝ exp(−v2/2σ2), and which we can integrate over velocity space

to yield:

dρ1

dr
=
−GM
(σr)2

ρ0.

The above equation yields the density perturbation induced upon the dark matter

distribution by the single star at rest as:

ρ1(r) = GM
rσ2 ρ0 .
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Decay of Wide Binaries in dSphs

We can think of the response of the dark matter halo to the presence of a wide binary,

where the orbital velocity is lower than σ, as being composed of two such

enhancements, one centred upon each star.

As these have to be constantly reformed, we can calculate the angular momentum loss

for each star in the binary star as:

L̇ =
MeVoRo

τ
, Me = 2π

GM

σ2
R2

0ρ0,

where Me is the mass of each enhancement, obtained by integrating ρ1 out to Ro, and

Vo and Ro are the binary orbital velocity and orbital radius, with τ = α/Ω a

characteristic timescale over which the density enhancement is being replenished, with

α a dimensionless constant expected to be of order unity.

The rate of loss of angular momentum for each component of the binary becomes:

L̇ =

(
4π

α

)(
GM

σ

)2

ρ0R0.
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Decay of Wide Binaries in dSphs

Assuming that the decay of the binary describes a tight spiral, we take the orbit as

circular throughout the evolution. This allows to obtain the temporal evolution of the

binary radius by deriving the angular momentum of each star in the binary

Lb = (2GM3R0)1/2 with respect to time, and equating it to the previous equation

giving:

Ṙ0 =

(
25/2π

α

)(
G3/2M1/2ρ0

σ2

)
R

3/2
0 ,

yielding:

τ1/2 =
( α

23/2π

) σ2

ρ0M1/2G3/2R0
.

Where R0 is the original binary orbital radius and we have introduced τ1/2 as the

time for R0 to go down by a factor of two, which for 1M� stars and α = 1 gives in

astronomical units:

τ1/2
10Gyr

= (σ/5kms−1)2

(ρ/M�pc−3)(R0/pc)1/2
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Decay of Wide Binaries in dSphs

τ1/2
10Gyr

=
(σ/5kms−1)2

(ρ/M�pc−3)(R0/pc)1/2

The previous dark matter density enhancement and resulting decay rate were

confirmed numerically for α = 1.07

Binaries wider than 1pc should not exist in dSph dark halos, cored or not!

X. Hernandez et al. (2008) MNRAS 387, 1727
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Dynamical Shrivelling of Ultra Faint dSphs

For lnΛ = 10 and going to Astronomical units,

τDF = 6.6× 106

(
R

kpc

)2(
V

250km/s

)(
M�

M

)
Gyr

Which is interesting for 106M� and above objects moving in the halo of MW type

galaxies, but irrelevant for stars! But notice R2V dependence...

Taking lnΛ = 15 and changing units....

τDF = 1.7
(

R
10pc

)2 (
V

km/s

)(
M�
M

)
Gyr

Which suggests τDF for ultra faint dSphs might get interesting...
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Dynamical Friction in Pressure Supported Systems

The loss of potential energy for the star in moving through a distance dx is now

dw = FDF dx. Dividing by dt we obtain,

dw

dt
= FDF

dx

dt
= V FDF = −V 0.428lnΛ

GM2

R2
.

Assuming still circular orbits in an isothermal halo characterised by a logarithmic

potential, the loss of potential energy for the star when its orbital radius changes from

R+ dR to R will be given by dw = MV 2ln(1 + dR/R), which for tightly wound orbits

and dR << R reduces to dw = MV 2dR/R and hence,

dw

dR
=
MV 2

R
.

Since dR/dt = (dR/dw)(dw/dt), we can now write the evolution equation for the

orbital radius as:

dR
dt

= −0.428lnΛGM
RV

.

The above is exactly the same evolution equation which results from starting from

tracing the loss of angular momentum for the star assuming slowly inspiraling circular

equilibrium orbits, and validates the approach introduced of tracing rather, the

evolution of the potential energy of the star being followed.
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Dynamical Friction in Pressure Supported Systems

If we now return to stars supported by velocity dispersion in dSphs, changing V for

σ∗, and assuming initially that the velocity dispersion of the stars equals that of the

dark matter particles, X = 1/
√

2, and A(X) = 0.2. Going back to Chandrasekhar’s,

the dynamical frictional force on the sample star is now:

FDF = −2.5lnΛρ

(
GM

σ∗

)2

.

As previously, dw/dt = σ∗FDF , and hence the total rate of loss of potential energy for

all the N stars in the dSph galaxy will be:

dW

dt
= −2.5

lnΛNρ(GM)2

σ∗

For a star of mass M at a radial distance R within the constant density core of a dark

matter halo of density ρ, as inferred in general for dSphs (e.g. Goerdt et al. 2006), in

moving a radial distance dR , the change in potential energy is given by:

dW
dR

= − 4π
3
GMρR.
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Dynamical Friction in Pressure Supported Systems

Evaluating the above at the half-light radius, rh, and using

dW/dt = (dW/drh)(drh/dt) allows us to write for the full N stars:

dW

dt
= 4.2GMNρrh

drh
dt

,

from which we can solve for the decay rate of the half light radius,

drh
dt = −0.6 lnΛGM

σ∗rh

It is reassuring of the development presented that the above equation agrees with the

classical expression for the decay rate of the orbital radius of a particle inspiraling

within a dark matter halo along quasi-circular orbits, exactly in all the physical

dependencies, and to within a factor of order unity in the numerical coefficient, a

minor difference due to the slightly distinct physical conditions of the pressure

supported system being treated here.
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Dynamical Friction in Pressure Supported Systems

Integrating the above equation and defining τDF as the time taken for the stellar

half-light radius to be reduced by a factor of two gives:

τDF = 0.63
σ∗r

2
h

lnΛGM
,

which in astronomical units for 1M� stars, yields:

τDF =
0.14

lnΛ
(σ∗/kms

−1)(rh/pc)
2Gyr.

Again, the same physical scalings and order of magnitude than what results from

following the loss angular momentum for a particle in a circular orbit within an

isothermal halo. For a value of lnΛ = 15, corresponding to typical values for ultra

faint dSphs, the above equation yields:

τDF = 0.93(rh/10pc)2(σ/kms−1)Gyr.
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Are observed ultra faint dSphs consistent? τDF = 0.93(rh/10pc)2(σ/kms−1)Gyr

...interesting as the ages of the systems are ≥ 10Gyr

As recently confirmed for cuspy ΛCDM dark matter halos by S. Inoue (2017)

Having a Cored DM halo in the ultra faint dSphs becomes Crucial!
X. Hernandez (2016) MNRAS 462, 2734, S. Inoue (2017) MNRAS, 467, 4491
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Conclusions

Dynamical friction results in a consistency check on any dark matter explanations for the

observed kinematics of dwarf galaxies, providing independent constraints on survival of GCs,

wide binaries, and at the ultra faint end, survival of the galaxies themselves.

The various GC systems of local dSphs imply that only cored dark matter halos are

consistent with observations, a density profile which can be hard to explain at the smallest

galactic scales in terms of originally cuspy halos and feedback scenarios. (e.g. A. Di Cintio)

The existence of binary stars with separations larger than 1pc is inconsistent with the

presence of a dark matter halo in dSphs. Are there any?

τDF = (σ/5kms−1)2(ρ/M�pc−3)−1(R0/pc)−1/210Gyr.

Dark matter dominated dSphs will be subject to dynamical friction on their individual stars,

over a timescale of τDF = 0.14(σ∗/kms−1)(rh/pc)
2(lnΛ)−1Gyr. This dynamical friction

shrivelling will become relevant for sizes of the order of the smallest recently detected ultra

faint dSphs, with a theoretical lower stability limit of ≈ 19pc . Any future detections of even

slightly smaller ultra faint dSphs would be incompatible with a particle dark matter

hypothesis and cuspy dark matter halos.

Under an alternative MONDian gravity scenario, no such consistency lower limits appear, as

in the absence of dark matter, no dynamical friction ensues. Also, observed velocity

dispersion values for ultra faint dSphs agree with MOND predictions of equilibrium

velocities, for the measured stellar content of the systems in question.
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What happens after τDF ?

After 3τDF , the dark matter mass within the typical stellar radius will have decreased

by a factor of 83 = 512, bringing the mass to light ratio to within stellar values, i.e.,

the structure will no longer be dark matter dominated, and will appear more like a

globular cluster than a dSph. The stellar potential energy will then be given by:

W = −0.4
G(MN)2

rh
,

e.g. Binney & Tremaine eq. (4-80b). Differentiation w.r.t. rh of the above, and

proceeding as in the previous dark matter dominated case, yields:

drh
dt

= −6.25
lnΛGρr2

h

Nσ∗

as the corresponding equation. Similarly, integrating and defining again τDF∗ as the

time required for rh to go down by a factor of two, leads to:

τDF∗ = 0.16Nσ∗
lnΛGρrh
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What happens after τDF ?

Which in astrophysical units reads:

τDF∗ = 40N3
lnΛ

(σ∗/kms
−1)(ρ/M�pc

−3)−1(rh/pc)
−1Gyr

where N3 is the total number of stars in units of thousands. Again, for lnΛ = 15 we

obtain, τDF∗ = 0.27N3(rh/10pc)−1(ρ/M�pc
−3)−1(σ∗/kms

=1). By comparing to the

corresponding expression for the dark matter dominated phase, we see a similar scale

for N3 = 1 and ρ = 1M�pc
−3, parameters typical for ultra faint dSphs.

The change in the potential energy from dark matter dominated to a self gravitating

population of stars, changes the radial dependence on the DF timescales from R2 to

R−1, such that the process is now self-limiting and the evolution timescales now grow

as the radius is reduced. As rh goes down, the process stops and a tight stellar

cluster, rather than a dark matter dominated dSph results.
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What happens after τDF ?

Which in astrophysical units reads:

τDF∗ = 40N3
lnΛ

(σ∗/kms
−1)(ρ/M�pc

−3)−1(rh/pc)
−1Gyr

The change in the potential energy from dark matter dominated to a self gravitating

population of stars, changes the radial dependence on the DF timescales from R2 to

R−1, such that the process is now self-limiting and the evolution timescales now grow

as the radius is reduced. As rh goes down, the process stops and a tight stellar

cluster, rather than a dark matter dominated dSph results.

When the potential of the stars themselves begins to dominate over that of the dark

matter, the evolution reaches a phase described by the above equations. Ultra faint

dSphs with τDF shorter than their ages will be unstable structures under a particle

dark matter hypothesis.
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