Dwarf Galaxy Dispersion Profile Calculations
Using a Simplified MOND External Field Effect
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Dwarf Galaxy Dispersion Profile Calculations
Using a Simplified MOND External Field Effect

Outline:

Review our model of dSph’s in the isolated MOND case

Review our results for dispersion profiles for MW dSph’s in the
isolated MOND case

Extensions of our model to include the External Field Effect

Some results that we have generated in the last few months.



Introductions: How did I get here?

Disclaimer: I am not now - - nor have I ever been -- a galactic astronomer.

Until about 4 yrs, ago | was a planetary dynamics guy, Ben Amend
then these two undergrads showed up in my office: (BS)
Josh
Schussler | E
(MS) A
Tristan
Clark Mike g
(BS "14) Zito | %[

Ben
Blankartz
(BS 15 MS "17)

(BS)

-

Matt Alex
Walentosky

Justin

A Staron Messinger
(MS "16) (BS “17) (BS “17)



What Did We Want To Try To Do?

~ il i ;‘ | *,f il We looked at the bulk dispersion
=T %] . le 4 I . ,
A Ry ' T T To 1 % 1 calculations for Andromeda dSph’s
el ° %:g s I\ ’50 I@- in McGaugh & Milgrom (2013).
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A former student of mine, Louis Strigari,

10
recommended that we take a look at .
the observed dispersion profiles of MW ] E T
dSph’s in Walker et al. (2009). 15‘} R ,;‘:Iif;x;s"f“ U, . S

We thought: Can we put together a model g i
that incorporates MOND that can calculate R R
these things?

DI [l S o PO L T 0
500 750 1000

R [pc] R [pc]




Our Model of a dSph

(keep it as simple as possible*)

Model consists of a spherically symmetric gravitating baryon cloud of mass M
with half-mass radius r,,, and 10,000 stars that feel only the gravity of the cloud.

The distribution of mass in the cloud is given
by a Hernquist profile:
M a 1
p(r) = > as = scalelength

277 (r 4+ ag)3 ;
r12 = (1+ V2)a,

This gives the interior mass for a star at r:

T’2

(r 4+ as)?

To prevent unphysical accelerations for r 2 0, we impose a constant density core
with a radius that is some fraction of the scalelength, 7. = aas. Matching the densities
at r = r_gives the core mass and core interior mass:
20¢2 7 .
Me=_—"2 M Mg, = —3?“3 For o« = 0.1, this gives M ~ 0.005M
3(a+1)3 T

Mi}ﬁt (r)=M

* “For most problems: you can get 90% of the answer with 10% of the effort”
Dr. Thomas M. York, Penn State (circa 1975)



Our Model of a dSph: Initial Conditions

600 T T T T T T T T T T T T T T T 0.0025

The initial radial coordinate of each
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star is chosen consistent with the \ Radial Distribution Histogram
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During a simulation, r,/, can be Distance from Center (pc) |

calculated to adjust the scalelength,
or the baryon distribution can be held constant.

For initial velocities, we have tried three different scenarios:

1. Circular with orbital planes randomly oriented in three dimensions

2. Radial (i.e. back and forth through the origin) with random initial speeds

3. Randomized, i.e. each velocity component is randomly assigned between +/- V.
We chose #3 as it reproduces a pure randomized pressure supported system.

Since each star only interacts with the baryon cloud, the choice of stellar mass
is not important; however, we can select a distribution of masses consistent
with an empirical Initial Mass Function.

Probability



Our Model of a dSph: Integration Technique

* We have many years experience working with the Hermite Individual Timestep
Scheme (HITS) that was developed by Aarseth and Makino (1992).

* In HITS, each body has its own time and timestep so that objects with large accelerations
can be integrated with small timesteps, while objects with small accelerations can use
larger timesteps. We have used this feature to study motion in planetary systems that
include both satellites and rotation.

* HITS requires analytical expressions for the acceleration and its time derivative for
each body. For the spherically symmetric baryon cloud and Newtonian gravity:

GMint
9, = — ?“3 r
Hernquist: Core:
_ GM!;; 204 (r-v)r _ G M¢E
r (r+ as) r r

* HITS then integrates in time to obtain positions to 5™ order and velocities to 4" order



Our Model of a dSph: Including MOND

(keep it as simple as possible)

In its original form, Milgrom’s MOND can be considered as a modification of

Newtonian gravity of the form: a
o(2)-s

agp

where a is the actual acceleration vector, g, is the Newtonian, a, is the
characteristic MOND acceleration (we use a; = 1.2 X 1019 m/s?), and
Lt is a matching function that gives the correct limiting values.

Remembering to keep it as simple as possible, for the matching function,
we chose the simple function: .
€Tr) —
nix) 14+

* This gives the MOND acceleration and its time derivative:

1+ \/1 +4 (@) ]
Gn

)] ()6
dn ) 9n gn

1+4(“—0

gn

g,
a —=— —
2

(1,25 9n

e These can be fed into HITs to solve for the motion of the stars.



Animations of the Motion of Stars in our Model

Three Stars with traced orbits 500 Stars
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Red circles are 2 kpc and 4 kpc in diameter; Clock reads in My’s, but it’s hard to see
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Our Model of a dSph: Calculating Dispersions

Each simulation generates snapshots of position/velocity data for all stars
at selected time intervals.

At each time, we calculate the bulk line-of-sight velocity dispersion as the standard
deviation of one the velocity components:

Or = \/<Ua2:> — (vz)?

This generates the dispersion as a function of time, so the final step is a time average.

A dispersion profile is generated at each snapshot
by putting an equal number of stars into concentric
annular bins and calculating the l.o.s dispersion

for that bin.

For a simulation with 10,000 stars, we use 100
bins, so we have ~100 stars/bin.

To obtain the final dispersion profile, we take a
time average over the time-dependent profiles.




Simulations of MW dSph’s:

Bulk Dispersions

We ran our simulations in the MOND case
for the 8 MW dSph’s shown here.

We varied the mass to light ratio, M/L,

until our calculated bulk dispersion was
within the error bars of the observations.

15

Bulk Dispersion (km/s)
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M/L \

We get reasonable M/L values for
all but two of the galaxies.

Table 1. Observed Properties of MW dSph’s. Milky Way dis-

tances are from McClonnachie

(2012); 3D half-mass radii and

luminosities are from Walker et al.  (2010).
Galaxy rruw 3D ry) Ly Tobs

(kpc) (pc) (Lo) (km s 1)
Carina 107 321429 24+1.0x10° 6.6+1.2
Fornax 149 891445 14+04x107 11.7+0.9
Leo I 258 328425 JA+LIx10° 82414
Leo IT 236 201+23 594+18x10° 6.6+0.7
Sculptor 86 347452 14406 x10° 9.24+1.1
Draco 76 261+16 2.7+0.4x10° 9.1+1.2
Sextans 89 909+23 4.14+19x10° 79+1.3
Ursa Minor 78  3734+20 2.0+0.9x10° 9.5+1.2

.

Carina

S (5.0)

—S—
* &

Fornax
(1.5)

1

Leol
(2.0)

o
\ 4
X

*
*

Observed
Qur Mode
MOND Vir

d 2

Leo II
(3.5)

from Walke

al Relation (as in MaGaugh & Mi

s

s

Sculptor
(4.0)

r et. al 2009)

Draco
(20.0)

&

Sextans
(6.0)

(31.0)

Igr;)m 2013)

*
*

Ursa Minor

Alexander et al. (2017)



Illllll'llllllllllllll||l||

Draco
} } MOND M/L = 20

Simulations of MW dSph’s: B T
Dispersion Profiles
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Newtonian results following

the same procedure of adjusting
the M/L until the bulk dispersion
comes close to that observed. T BT R T i M s R e e
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A Closer Look at Fornax

* The previous slide shows a profile for Fornax with M/L = 1.5 that is well above the
observations, yet gives us a bulk dispersion close to that observed.
* Below is a profile for Fornax with a smaller mass of M/L = 1, but here the bulk

dispersion is less than the observed value.
* This agrees better with Walker’s observed profile, except for the last four points.
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[ Fornax M/L =1.0 +/- 1 standard deviation
from statistical fluctuations
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Including the External Field Effect (EFE)

All of the results that | have shown here are for the Isolated MOND Case, i.e.
the gravity of any host or external galaxy is ignored.

dSph’s are at different distances from their host galaxies and have different sizes,
so the effect of the gravity of the host, i.e. the External Field Effect,may be important.

e What is the External Field Effect?

In his original 1983 work, Milgrom cited open clusters as systems that have internal

acceleration < a,, but show no mass discrepancy, and hence are not in the MOND
regime. Based on this observed fact, he postulated:

“We are then compelled to conclude that the internal dynamics of the open clusters
embedded in the field of the Galaxy is different from that of a similar but isolated
cluster. When the external field g (and hence the resultant acceleration) become
comparable to or larger than a, the internal dynamics approaches and eventually
becomes Newtonian even when the internal accelerations themselves are much
smaller than a,.” (Milgrom, ApJ, 270, 1983)

The essential point here for dSph’s is that it’s the total acceleration, internal plus
external, that should matter.



Our Model of a dSph: Including MOND & EFE

(keep it as simple as possible)

1. As before, treat a dSph as a spherically symmetric baryon cloud described by a Hernquist
distribution with baryonic mass M and half-mass radius r,,. So the magnitude of the
Internal Newtonian Acceleration of a star at radius r is: G M,

1n

In,

72

2. Assume that the gravitational field of the Milky Way is uniform with magnitude equal to
its value at the dSph center. Using M,,,, as the baryon mass of the Milky Way,
the uniform External Newtonian Acceleration is:
GMyrw

dn. 5
" vw

gne




Our Model of a dSph: Including MOND & EFE

3. Our starting point to include the EFE is the MOND relation is Sanders & McGaugh (2002)

g. + 9,
ag

where g, and g; are the actual external and internal acceleration vectors and g, is the
Newtonian internal acceleration, and p is, again, the matching function.

4. The magnitude of the external acceleration is corrected for MOND as in the isolated
case. Using the same matching function that was used in the isolated case, gives
for the Actual External Acceleration:

1+ 4/1+4 (a—0>

gne
5. Keeping things as simple as possible, replace the magnitude of the vector sum |g, + g|
with the sum of the magnitudes: |g.| + |g;].

What's the red flag? We’ve added two vectors by adding their magnitudes — oh, the
irony! We recognize this. . . let’s call this the zeroth order attempt see where it goes.

— gne

e 9

!
!
X
6. Using our simple matching function, () = 1+
this gives for the magnitude of the
Actual Internal Acceleration: _9ni —Ye | Ini T Ge 4gn, a0
9i + + 5



MOND EFE Sample Accelerations

e Our relation for the MOND EFE acceleration should give the necessary limiting
cases, and perhaps something different in between.

e Toillustrate this, we consider a toy model dSph near the Milky Way with:

Baryon Mass M = 107 Mg (Baryon)MW Mass, My = 6.5 x 1010 M
Half-mass radius r;,o = 500 pc ~ Distance to dSph, rysw = 200 kpc

* We consider three cases:
1. Casel:g <g <a, (just reduce My, by 10%)
Should give g; the same as the isolated MOND case.

2. Case2:g<a,<g, (just increase M,,,, by 10%)
Should give g; the same as the Newtonian case.

3. Case3:g ~g.<a, (keep data as above)

* Another case that is widely used is the “Effective Newtonian Case” where
where g. << g, << a,. In this limit:

Ga’O Mint o Mint
- GCH 2
r

g’& — ngf ~ ge ”]"2

which gives a quasi-Newtonian acceleration with a reduced gravitation constant.
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Acceleration(ap )
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Case 3 & Effective Newtonian: Acceleration Profile

Gaog Mint Mint
9i = Je < Qo and  Jeff = 5~ = Gefi—5—
Je T r
AT T e
— Gi
e
10 “‘“‘“ge |
— One
_______ mgiiso
— Oni

External Actual g,

Acceleration (ao)
(@

Internal Actual g;

0.011
- Internal Newtonian g,

External Newtonian g,

0.001 L T | | | 1 1 1 1 | 1 1 1 L | L 1 1 I | 1 I 1 I | 1 I I 1
0 500 1,000 1,500 2,000 2,500 3,000

Distance from center (pc)



dSph Dispersion Profiles Using our EFE Model

(recent preliminary results)

To calculate dispersion profiles, we use the EFE acceleration as above in vector
form, differentiate it, and code it into our HITS integrator — I’'m assuming no one
wants to see these equations — | can pull them up if you want.

To date, we’ve looked at two galaxies: Leo | and Fornax. We used the updated
luminosities and half-mass radii in the appendix of Lelli et al. (2017):

Ly =5.5x10°% Lg Ly =2.4x 107 L
Leol: ry,5 =298 pc Fornax: r;,, = 792 pc
ruw = 258 kpc ryuw = 149 kpe

As in the isolated case, we populate the space with 10,000 stars according to

the Hernquist distribution, assign random initial velocities, and integrate the
motion for 2.5 Gy.

One difference here is that we now adjust the M/L for each galaxy until we
get the best chi-squared match with the observed dispersion profile.



Acceleration (ap)

Acceleration and Dispersion for Leo | (M/L = 2)
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Acceleration (a,)

Acceleration and Dispersion for Fornax (M/L = 1)
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1.

Where to Go From Here ?

(Please feel free to make any suggestions)

Perform simulations of the other MW dSph’s that have observed profiles?
Other dSph’s (Crater II?) - or other objects of interest?

Try different initial velocities?

Try other density profiles to model dSph mass distribution,
e.g. the Plummer profile?

Go back and treat acceleration vector sum more rigorously in the MOND
EFE equation? (breaks spherical symmetry)

Include tidal effects in our calculations? (also breaks spherical symmetry)
Include binary stars in the simulation?

Use our dSph model with Dark Matter Models instead of MOND?



