Hot gas explodes out of young dwarf galaxies

Simulation by Andrew Pontzen, Fabio Governato and Alyson Brooks on the Darwin Supercomputer, Cambridge UK.

Simulation code **Gasoline** by **James Wadsley** and **Tom Quinn** with metal cooling by **Sijing Sheng**.

Visualization by Andrew Pontzen.

Alyson Brooks Rutgers, the State University of New Jersey

In collaboration with the University of Washington's N-body Shop™ makers of quality galaxies

 (1) BROOKS, PAPASTERGIS, ET AL., (2017), APJ, SUBMITTED, ARXIV:1701.07835
 "How to Reconcile the Observed Velocity Function of Galaxies with Theory"

(2) MUNSHI, BROOKS, ET AL., (2017), MNRAS, SUBMITTED, ARXIV: 1705.06286
"GOING, GOING, GONE DARK: QUANTIFYING THE SCATTER IN THE FAINTEST DWARF GALAXIES"

> Alyson Brooks Rutgers, the State University of New Jersey

In collaboration with the University of Washington's N-body Shop™ makers of quality galaxies

 (1) BROOKS, PAPASTERGIS, ET AL., (2017), APJ, SUBMITTED, ARXIV:1701.07835
 "How to Reconcile the Observed Velocity Function of Galaxies with Theory"

(2) MUNSHI, BROOKS, ET AL., (2017), MNRAS, SUBMITTED, ARXIV: 1705.06286
"GOING, GOING, GONE DARK: QUANTIFYING THE SCATTER IN THE FAINTEST DWARF GALAXIES"

> Alyson Brooks Rutgers, the State University of New Jersey

In collaboration with the University of Washington's N-body Shop™ makers of quality galaxies

THE MISSING DWARF PROBLEM IN THE FIELD

BUT: TWO WAYS TO MEASURE ROTATION (RESOLVED VS UNRESOLVED)

CREATING MOCK OBSERVATIONS

HOW WELL DO THEORY AND OBSERVATION MATCH?

Brooks et al. (2017), arXiv:1701.07835

ALSO CONSIDER DETECTABILITY

Brooks et al. (2017), arXiv:1701.07835

NO MISSING DWARFS: WE OBSERVE THEM AT LOWER VELOCITIES THAN EXPECTED

Brooks et al. (2017), arXiv:1701.07835

POINT: ABUNDANCES ARE AS EXPECTED IN LCDM

Brooks, Papastergis, et al. (2017), arXiv:1701.07835

 (1) BROOKS, PAPASTERGIS, ET AL., (2017), APJ, SUBMITTED, ARXIV:1701.07835
 "How to Reconcile the Observed Velocity Function of Galaxies with Theory"

(2) MUNSHI, BROOKS, ET AL., (2017), MNRAS, SUBMITTED, ARXIV: 1705.06286
"GOING, GOING, GONE DARK: QUANTIFYING THE SCATTER IN THE FAINTEST DWARF GALAXIES"

THE STELLAR MASS — HALO MASS RELATION AT LOW MASSES

THE STELLAR MASS — HALO MASS RELATION

z=0 DM density

z=0 Gas density

THE DWARF VOLUMES

COMPLETE

THE "BEND" IS DUE TO THE INCLUSION OF SATELLITES

EFFECT OF SCATTER

Garrison-Kimmel et al. 2017

A TOOL TO POPULATE LOW MASS HALOS

We adopt the trends defined for our well-resolved halos:

a slope of the SMHM $\alpha = 2.4$ for $8.4 < log(M_{halo}) < 11.5$ (shown by the red dashed line), with a shallower slope of $\alpha = 0.64$ at lower halo masses. The scatter is fixed to a constant 0.2 above $M_1 = 5 \times 10^9 M_{\odot}$, and linearly grows below this halo mass so that $\gamma = -0.26$.

 $\sigma = 0.2 + \gamma (\mathrm{log_{10}M_{halo}} - \mathrm{log_{10}M_1})$

PREDICTED STELLAR MASS FUNCTION

DOES STAR FORMATION PRESCRIPTION MATTER?

DOES STAR FORMATION PRESCRIPTION MATTER?

Munshi et al. (in prep)

IMPACT ON EXPECTED SATELLITE FRACTION IN DWARFS

Munshi et al. (in prep)

CONCLUSIONS

- Starting from the *abundance* of dwarf galaxies predicted in LCDM, the HIVF can be recovered. There is no missing dwarf problem in the field.
- The scatter in the SMHM relation in low mass halos increases with decreasing halo mass. There is no one-to-one assignment of stellar mass to halo mass.
- The "bend" at low halo masses found by Sawala et al. (2015) is due to the inclusion of satellites.
- The increased scatter at low masses leads to a prediction of a steeper stellar mass function in the ultra-faint dwarf galaxy mass range, currently being probed by DES, HSC, MagLiteS, etc, and by LSST in the future.

