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Large Scales: Concordance ΛCDM
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Fig. 1. Planck 2015 temperature power spectrum. At multipoles ` � 30 we show the maximum likelihood frequency-averaged temperature
spectrum computed from the Plik cross-half-mission likelihood, with foreground and other nuisance parameters determined from the MCMC
analysis of the base ⇤CDM cosmology. In the multipole range 2  `  29, we plot the power spectrum estimates from the Commander component-
separation algorithm, computed over 94% of the sky. The best-fit base ⇤CDM theoretical spectrum fitted to the Planck TT+lowP likelihood is
plotted in the upper panel. Residuals with respect to this model are shown in the lower panel. The error bars show ±1� uncertainties.

parameters, with the exception of ✓MC, which is lower by
0.67�, ⌧, which is lower by 1�, and Ase�2⌧, which is higher
by about 4� . The change in ⌧ simply reflects the preference
for a lower value of ⌧ from the Planck LFI polarization
data compared to the WMAP polarization likelihood in the
form delivered by the WMAP team (see Sect. 3.4 for further
discussion). The large upward shift in Ase�2⌧ reflects the
change in the absolute calibration of the HFI. As noted in
Sect. 2.3, the 2013 analysis did not propagate an error on
the Planck absolute calibration through to cosmological
parameters. Coincidentally, the changes to the absolute
calibration compensate for the downward change in ⌧ and
variations in the other cosmological parameters to keep
the parameter �8 largely unchanged from the 2013 value.
This will be important when we come to discuss possible
tensions between the amplitude of the matter fluctuations at
low redshift estimated from various astrophysical data sets
and the Planck CMB values for the base ⇤CDM cosmology
(see Sect. 5.6).

(4) Likelihoods. Constructing a high-multipole likelihood for
Planck, particularly with T E and EE spectra, is complicated
and di�cult to check at the sub-� level against numerical
simulations because the simulations cannot model the fore-
grounds, noise properties, and low-level data processing of
the real Planck data to su�ciently high accuracy. Within the
Planck collaboration, we have tested the sensitivity of the

results to the likelihood methodology by developing several
independent analysis pipelines. Some of these are described
in Planck Collaboration XI (2016). The most highly devel-
oped of them are the CamSpec and revised Plik pipelines.
For the 2015 Planck papers, the Plik pipeline was chosen
as the baseline. Column 6 of Table 1 lists the cosmological
parameters for base⇤CDM determined from the Plik cross-
half-mission likelihood, together with the lowP likelihood,
applied to the 2015 full-mission data. The sky coverage used
in this likelihood is identical to that used for the CamSpec
2015F(CHM) likelihood. However, the two likelihoods di↵er
in the modelling of instrumental noise, Galactic dust, treat-
ment of relative calibrations, and multipole limits applied to
each spectrum.

As summarized in Col. 8 of Table 1, the Plik and CamSpec pa-
rameters agree to within 0.2�, except for ns, which di↵ers by
nearly 0.5�. The di↵erence in ns is perhaps not surprising, since
this parameter is sensitive to small di↵erences in the foreground
modelling. Di↵erences in ns between Plik and CamSpec are
systematic and persist throughout the grid of extended ⇤CDM
models discussed in Sect. 6. We emphasize that the CamSpec
and Plik likelihoods have been written independently, though
they are based on the same theoretical framework. None of
the conclusions in this paper (including those based on the full
“TT,T E, EE” likelihoods) would di↵er in any substantive way
had we chosen to use the CamSpec likelihood in place of Plik.
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Fig. 1. Planck 2015 temperature power spectrum. At multipoles ` � 30 we show the maximum likelihood frequency-averaged temperature
spectrum computed from the Plik cross-half-mission likelihood, with foreground and other nuisance parameters determined from the MCMC
analysis of the base ⇤CDM cosmology. In the multipole range 2  `  29, we plot the power spectrum estimates from the Commander component-
separation algorithm, computed over 94% of the sky. The best-fit base ⇤CDM theoretical spectrum fitted to the Planck TT+lowP likelihood is
plotted in the upper panel. Residuals with respect to this model are shown in the lower panel. The error bars show ±1� uncertainties.

parameters, with the exception of ✓MC, which is lower by
0.67�, ⌧, which is lower by 1�, and Ase�2⌧, which is higher
by about 4� . The change in ⌧ simply reflects the preference
for a lower value of ⌧ from the Planck LFI polarization
data compared to the WMAP polarization likelihood in the
form delivered by the WMAP team (see Sect. 3.4 for further
discussion). The large upward shift in Ase�2⌧ reflects the
change in the absolute calibration of the HFI. As noted in
Sect. 2.3, the 2013 analysis did not propagate an error on
the Planck absolute calibration through to cosmological
parameters. Coincidentally, the changes to the absolute
calibration compensate for the downward change in ⌧ and
variations in the other cosmological parameters to keep
the parameter �8 largely unchanged from the 2013 value.
This will be important when we come to discuss possible
tensions between the amplitude of the matter fluctuations at
low redshift estimated from various astrophysical data sets
and the Planck CMB values for the base ⇤CDM cosmology
(see Sect. 5.6).

(4) Likelihoods. Constructing a high-multipole likelihood for
Planck, particularly with T E and EE spectra, is complicated
and di�cult to check at the sub-� level against numerical
simulations because the simulations cannot model the fore-
grounds, noise properties, and low-level data processing of
the real Planck data to su�ciently high accuracy. Within the
Planck collaboration, we have tested the sensitivity of the

results to the likelihood methodology by developing several
independent analysis pipelines. Some of these are described
in Planck Collaboration XI (2016). The most highly devel-
oped of them are the CamSpec and revised Plik pipelines.
For the 2015 Planck papers, the Plik pipeline was chosen
as the baseline. Column 6 of Table 1 lists the cosmological
parameters for base⇤CDM determined from the Plik cross-
half-mission likelihood, together with the lowP likelihood,
applied to the 2015 full-mission data. The sky coverage used
in this likelihood is identical to that used for the CamSpec
2015F(CHM) likelihood. However, the two likelihoods di↵er
in the modelling of instrumental noise, Galactic dust, treat-
ment of relative calibrations, and multipole limits applied to
each spectrum.

As summarized in Col. 8 of Table 1, the Plik and CamSpec pa-
rameters agree to within 0.2�, except for ns, which di↵ers by
nearly 0.5�. The di↵erence in ns is perhaps not surprising, since
this parameter is sensitive to small di↵erences in the foreground
modelling. Di↵erences in ns between Plik and CamSpec are
systematic and persist throughout the grid of extended ⇤CDM
models discussed in Sect. 6. We emphasize that the CamSpec
and Plik likelihoods have been written independently, though
they are based on the same theoretical framework. None of
the conclusions in this paper (including those based on the full
“TT,T E, EE” likelihoods) would di↵er in any substantive way
had we chosen to use the CamSpec likelihood in place of Plik.
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Large Scales: Concordance ΛCDM

Planck Collaboration (2016)

1st peak:ℓ~ 200 → 150 Mpc 
Milky Way: ~2 Mpc → ℓ~ 15,000 
Dwarfs: ~0.2 Mpc → ℓ~ 150,000



The scales of ΛCDM

ΛCDM power spectrum
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From Mgal to Mhalo
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abundance matching: demand that n(>Mhalo)=n(>M★)



Figure 6

Abundance matching relation from Behroozi et al. (in preparation). [**AU: Please provide full
cite info OR at least provide the ArXiv code number. If you cannot provide either of
these, then please identify the first 5 authors with et al. or 6 total authors (with first
initials) for an in-text citation. **] Gray (magenta) shows a scatter of 0.2 (0.5) dex about
the median relation. The dashed line is power-law extrapolation below the regime where large sky
surveys are currently complete. The cyan band shows how the extrapolation would change as the
faint-end slope of the galaxy stellar mass function (α) is varied over the same range illustrated by
the shaded gray band in Figure 5. Note that the enumeration of M⋆ = 105 M⊙ galaxies could
provide a strong discriminator on faint-end slope, as the ±0.15 range in α shown here maps to an
order of magnitude difference in the halo mass associated with this galaxy stellar mass and a
corresponding factor of ∼10 shift in the galaxy/halo counts shown in Figure 3.

At the small masses that most concern this review, DM halo counts follow dn/dM ∝ Mα

with a steep slope αdm ≃ −1.9 compared with the observed stellar mass slope of αg = −1.47

[Baldry et al. 2012, which is consistent with the updated GAMA (Galaxy and Mass As-

sembly) results shown in Figure 5]. Current surveys that cover enough sky to provide

a global field stellar mass function reach a completeness limit of M⋆ ≈ 107.5 M⊙. At this

mass, galaxy counts are more than two orders of magnitude below the näıve baryonic mass

function fbMvir. The shaded band illustrates how the stellar mass function would extrapo-

late to the faint regime spanning a range of faint-end slopes α that are marginally consistent

with observations at the completeness limit.

One clear implication of this comparison is that galaxy-formation efficiency (ϵ⋆) must

www.annualreviews.org • Challenges to the ΛCDM Paradigm 15

Relevant mass scales in ΛCDM

Bullock & Boylan-Kolchin 2017



Prediction: steep (sub)halo density profiles

Bullock & Boylan-Kolchin 2017
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Dwarf galaxies vs ΛCDM: cores & cusps
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Observations indicate cored density profiles, while N-body simulations 
robustly predict density cusps (Moore et al. 1994, Flores & Primack 1994)

Cusp
Core



FIRE in the Field 7

Figure 5. Star formation rate, averaged over 50 Myr time intervals, as a function of time for a low-mass galaxy (left; M? = 4.7⇥105 M�), an intermediate-mass
galaxy (center; M? = 4.1 ⇥ 106) and a high-mass galaxy (halo m10k, M? = 1.0 ⇥ 107 M�) from our simulated sample. Dashed horizontal lines show the
average star formation rate for each galaxy over the age of the Universe. Galaxies with higher stellar mass at z = 0 have higher star formation rates, which in
turn drive larger gravitational potential fluctuations. Star formation in all of the galaxies is bursty, with significant variations around the mean.

0.1 1 10
104

105

106

107

108

109

�
(M

�
/k

p
c3

)

M� =4.7�105 M�

Halo m10b

0.1 1 10
Radius (kpc)

4.1�106 M�

Halo m10f

0.1 1 10

1.0�107 M�

Halo m10k

DMO

HYDRO

Figure 6. Density profiles for the three halos plotted in Figure 5. Dotted vertical lines mark the galaxy half-mass radius in each case. The gray hatched region
shows where numerical relaxation may a↵ect the density profiles according to the Power et al. criterion. The dashed gray (solid black) line corresponds to the
density profile for the DMO (hydrodynamical) run for each halo. The amount of central density reduction and size of any core produced is proportional to the
stellar mass of the galaxy.

tribution of their host halos, while galaxies with lower stellar mass
cannot.

To better understand the modification of the central dark mat-
ter structure in our simulated sample, Fig. 7 shows the ratio of
each galaxy’s density profile in the hydrodynamical run to ⇢(r) ob-
tained from its DMO version. The horizontal axis is scaled by the
galaxy half-mass radius, r1/2. The density profile ratios are colored
by M?(z = 0), identically to previous figures; below the Power
(2003) radius, the line coloring is changed to gray. A number of
interesting trends appear in the Figure. On large scales (r � r1/2),
the amplitude of the ⇢hydro(r) is very similar to ⇢DMO(r), indicating
that baryonic physics has minimal e↵ects there. On small scales
(r<⇠ r1/2), however, the density profiles in many runs are systemati-
cally lower in the hydrodynamical simulations relative to the DMO
simulations, pointing to the e�cacy of stellar feedback at modify-
ing the central gravitational potential even in dwarf galaxy halos.

It is also interesting to note that the size of this e↵ect depends on
stellar mass, echoing the results shown in Figure 6. The galaxies
with the lowest M? (darkest curves) show the least central den-
sity reduction – including no reduction at all for 2 of the systems
– while the highest M? galaxies show the largest central density
reduction. Furthermore, r1/2 is an excellent indicator of the radial
scale at which any density modification occurs. Our simulations
therefore predict that the density profiles of low-mass dwarf galax-
ies in ⇤CDM should be virtually unmodified (relative to DMO pre-
dictions) on scales larger than r1/2.

As an alternate way of looking at the central density reduction
as a function of stellar mass, Figure 8 shows the ratio of density
in the hydrodynamical run to the DMO run for each halo at a fixed
physical radius of 500 pc (as opposed to Figure 7, which shows cen-
tral density reduction as a function of r/r1/2). The density reduction
at a fixed physical radius also shows a clear correlation with M?.

MNRAS 000, 1–15 (2016)

Dark matter core formation?

Minimum mass scale for core formation / density reduction:  
M★ ~ 3x106 M⦿

Dark Matter Only 
Hydrodynamical

radius [kpc]

Fitts, MBK et al. (2016)

Fluctuations in gravitational potential from episodic star formation can heat dark matter 
(Pontzen & Governato 2012) 



Baryonic effects: sensitive to stellar mass

log10(M★ / M⦿)
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Fitts, MBK et al. 2016; see also Governato++, Brooks++, Oñorbe++, Penarrubia++, Garrison-Kimmel++, 
Chan ++, Di Cintio ++, Tollet ++…  For opposing opinions, see Read et al. 2016, Sawala et al. 2016

Baryons have 
little to no effect

Minimum mass scale for core formation: Mvir=1010 M⦿ (M★ ~ 3x106 M⦿) 



Baryonic effects: sensitive to stellar mass
Minimum mass scale for core formation: Mvir=1010 M⦿ (M★ ~ 3x106 M⦿) 

Figure 13

The impact of baryonic feedback on the inner profiles of dark matter halos. Plotted is the inner
dark matter density slope ↵ at r = 0.015R

vir

as a function of M?/M
vir

for simulated galaxies at z
= 0. Larger values of ↵ ⇡ 0 imply core profiles, while lower values of ↵ . 0.8 imply cusps. The
shaded gray band shows the expected range of dark matter profile slopes for NFW profiles as
derived from dark-matter-only simulations (including concentration scatter). The filled cyan stars
and shaded purple band (to guide the eye) show the predicted inner density slopes from the
NIHAO cosmological hydrodynamic simulations by Tollet et al. (2016). The cyan stars are similar
prediction from an entirely di↵erent suite of simulations from the FIRE-2 simulations (Fitts et al.
2016, Chan et al., in preparation). Note that at dark matter core formation peaks in e�ciency at
M?/M

vir

⇡ 0.005, in the regime of the brightest dwarfs. Both simulations find that for
M?/M

vir

. 10�4, the impact of baryonic feedback is negligible. This critical ratio below which
core formation via stellar feeedback is di�cult corresponds to the regime of classical dwarfs and
ultra-faint dwarfs.

the mass in stars formed (Governato et al. 2012; Di Cintio et al. 2014). If galaxies form

enough stars, there will be enough supernovae energy to redistribute dark matter and create

significant cores. If too many baryons end up in stars, however, the excess central mass

can compensate and drag dark matter back in. At the other extreme, if too few stars are

formed, there will not be enough energy in supernovae to alter halo density structure and

the resultant dark matter distribution will resemble dark-matter-only simulations. While

the possible importance of supernova-driven blowouts for the central dark matter structure

of dwarf galaxies was already appreciated by Navarro, Eke & Frenk (1996) and Gnedin &

Zhao (2002), an important recent development is the understanding that even low-level star

formation over an extended period can drive gravitational potential fluctuations that lead

to dark matter core formation.

This general behavior is illustrated in Figure 13, which shows the impact of baryonic

28 Bullock • Boylan-Kolchin

density profile 
slope on 
galaxy scale

Bullock & Boylan-Kolchin 2017, based on Tollet et al. 2016



• There is no definitive need to move beyond CDM. 

• However, in ΛCDM, need at least two large baryonic effects: 

‣ density cores induced by star formation feedback (cusp/core, too-big-to-fail) 

‣ suppressed galaxy formation from reionization feedback (missing satellites) 

• Furthermore, these effects must maintain observed regularity in various 
galaxy properties (unclear as to why) 

➡ Star formation, feedback, and cosmic reionization are central to 
understanding small-scale cosmological structure in all ΛCDM-
based galaxy formation models

Are we there yet?



• Multiple cosmological simulations run by different groups, codes: 
galaxies w/ M★ ≲ 3x106 M⦿ should not have appreciable density cores 

• Density profiles of low-mass galaxies outside of the Milky Way will 
provide sensitive tests of the CDM (+ baryon) model 

• If galaxies below this mass tend to have cores, then we may have to 
consider alternatives 

‣ Self-Interacting Dark Matter (SIDM): allow for dark matter self-scattering 

‣ Warm Dark Matter (WDM): non-negligible primordial thermal velocities 

‣ Ultra-light Axions: quantum effects on galaxy scales 

‣ Modified Gravity (MOND / TeVeS, etc.): modify gravity 

‣ Superfluid Dark Matter: phonons give MOND-like phenomenology 

Clues to the nature of dark matter



Dark Matter Models Beyond CDM
Modify linear physics or non-linear physics



Power Spectrum Modifications (CDM vs WDM)
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Dark Matter Self-Interactions (CDM vs SIDM)
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Abundances in CDM vs WDM vs SIDM

Bullock & Boylan-Kolchin 2017; 
Bozek, Boylan-Kolchin, ++ 2016

Figure 15

Dark matter phenomenology in the halo of the Milky Way. (a) Three images showing the same Milky Way–sized dark
matter halo simulated with CDM, SIDM (σ/m = 1 cm2g−1), and WDM (a Shi–Fuller resonant model with a thermal
equivalent mass of 2 keV). (b) The dark matter density profiles, and (d) the subhalo velocity functions of the three halos
shown in panel a. (c) Although the host halos have virtually identical density structure in CDM and WDM, individual
subhalos identified in both simulations have smaller Vmax values in WDM (Bozek et al. 2016). The dashed line shows a fit
to the simulated (magenta) points given by equation 4 of Bozek et al. (2016). This effect can explain the bulk of the
differences seen in the Vmax functions (d). Note that SIDM does not reduce the abundance of substructure (unless the
power spectrum is truncated), but it does naturally produce large constant-density cores in the dark matter distribution.
However, WDM does not produce large constant-density cores at Milky Way–mass scales but does result in fewer subhalos
near the free-streaming mass and reduces Vmax of a given subhalo (through reduced concentration) near the half-mode
mass (Mhalo ! 1010 M⊙ for the plotted 2 keV thermal equivalent model). Abbreviations: CDM, cold dark matter; SIDM,
self-interacting dark matter; WDM, warm dark matter.

36 Bullock & Boylan-Kolchin

Figure 15

Dark matter phenomenology in the halo of the Milky Way. (a) Three images showing the same Milky Way–sized dark
matter halo simulated with CDM, SIDM (σ/m = 1 cm2g−1), and WDM (a Shi–Fuller resonant model with a thermal
equivalent mass of 2 keV). (b) The dark matter density profiles, and (d) the subhalo velocity functions of the three halos
shown in panel a. (c) Although the host halos have virtually identical density structure in CDM and WDM, individual
subhalos identified in both simulations have smaller Vmax values in WDM (Bozek et al. 2016). The dashed line shows a fit
to the simulated (magenta) points given by equation 4 of Bozek et al. (2016). This effect can explain the bulk of the
differences seen in the Vmax functions (d). Note that SIDM does not reduce the abundance of substructure (unless the
power spectrum is truncated), but it does naturally produce large constant-density cores in the dark matter distribution.
However, WDM does not produce large constant-density cores at Milky Way–mass scales but does result in fewer subhalos
near the free-streaming mass and reduces Vmax of a given subhalo (through reduced concentration) near the half-mode
mass (Mhalo ! 1010 M⊙ for the plotted 2 keV thermal equivalent model). Abbreviations: CDM, cold dark matter; SIDM,
self-interacting dark matter; WDM, warm dark matter.
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Relevant for dwarf galaxy “abundance” problem (see Alyson Brooks’ talk)
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Figure 2. The V
max

ratio of the WDM halo compared with its
CDM counterpart. The ratio reaches the max value of ⇠ 90%
for nearly all halos (with the exception of Halo B that has a
very late merger) at t ⇠ 2 � 4 Gyr. The lower WDM V

max

is
due to the reduced central density profiles of WDM halos. The
larger WDM halo mass at the time of initial formation allows
for an abbreviated rapid collapse period as shown by the peak
V
max

ratio being reached by each halo at a similar cosmic time
of t ⇠ 2 � 4 Gyr. The V

max

ratio remaining constant thereafter
indicates that subsequent mass accretion builds the outer halo
while adding to the total mass of the halo.

Figure 3 shows the ratio of the density profiles of the
WDM and CDM halos from the DMO simulations. The
WDM halos all feature a reduced central density relative
to their CDM counterparts that can extend out from the
central region to r = 10� 30kpc. At r = 500 pc 1 the WDM
halos have a 15 � 40% density reduction which is slightly
less than the average reduction found for Local Group field
halos in (Bozek et al. 2016).

The density profiles of the WDM and CDM halos at z =
0 for the DMO simulations are shown in Figure 4. The halo
central density and V

max

are related according to V 2

max

/
⇢�2

r2�2

, where ⇢�2

and r�2

are the respective characteristic
density and scale radius of the Einasto profile fit to the halo
density profile. The weighted density profile shown in Figure
4 peaks at values of r/r�2

⇡ 1 where the density of the
WDM and CDM halos are correlated with the stellar mass
of the galaxy at z = 0. The greater the central density that
sets in early in the universe, the greater the resulting stellar
mass. The suppressed central density in WDM halos results
in a reduction in the galaxy stellar mass compared with
CDM. The overall reduction of the central density for WDM

1 We make several comparisons of between WDM and CDM at
r = 500 pc throughout the paper. This value was chosen to rep-
resent a fixed point near the center of the halo that is close to the
average half-light radius of galaxies in WDM halos and is a few
times larger than the convergence radius.

Figure 3. The ratio of WDM and CDM density profiles from the
DMO simulations. There is a 15 � 40% reduction in the central
density of WDM halos relative to CDM at 500 pc (dashed vertical
line). WDM halos collapse later then their CDM counterparts
when the background density of the Universe is lesser leading to
a reduced central density. This is slightly larger than the average
density profile ratio shown in bottom left panel of figure 7 in
Bozek et al. (2016) for field halos of the Local Group. The DMO
density reduction of the WDM halos relative to CDM extends out
⇠ 10 � 30kpc and is below 20% out to a few kpc for all WDM
halos. Halo M is the one exception with an upsloping density
profile for r < 1kpc.

halos is independent of the overall value of the density in
CDM as all the halos show a similar reduction in Figure 3.

The left panel in Figure 5 shows the mass accretion his-
tory of the WDM halos in the hydrodynamical simulations.
As in CDM (Fitts et al. 2016), the WDM halo virial mass
between t = 2 � 4 Gyr correlates with the stellar mass at
z = 0. The V

max

assembly history, shown in the right panel
of Figure 5, also correlates with the stellar mass at z = 0.
The WDM halo V

max

value peaks at t = 2 � 4 Gyr for all
halos with the exception of Halo B that features a late-time
merger that drastically increases both the value of V

max

and
the halo mass. The subsequent mass accretion following the
rapid collapse phase where the central potential is set builds
outer radii of the dark matter halo while increasing the over-
all halo mass.

4 GALAXIES IN WDM

While the delay in the collapse of WDM halos relative to
CDM does delay the start of star formation in the WDM
halos as shown in the left panel of Figure 9, the primary
e↵ect of the later collapse time is the reduction in the central
density of the dark matter halo which sets the final stellar
mass of the halo. The delay of the onset of star formation
does create a larger diversity in the star formation histories
of the WDM galaxies than in CDM. The largest galaxy (Halo
K) does not begin to form stars until z ⇠ 4.5, while two
of the smaller galaxies have similar stellar masses despite
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Figure 6. Left Panel:The star formation histories of the WDM (solid) and CDM (dashed) galaxies. The onset of star formation in
WDM galaxies is delayed relative to their CDM counterparts. The final stellar mass of the galaxy and the start of star formation are not
correlated. The largest galaxy (Halo K) begins forming stars around z = 5 while two of the smaller galaxies begin forming stars at very
discrepant times (Halo D at z ⇠ 7 and Halo E at z ⇠ 3.5). Right panel: The cumulative star formation histories (SFH) of the WDM
galaxies measured in an “archaeological” manner by measuring the birth times of stars in the galaxy at z = 0. Many of the galaxies have
SFH that are similar to observed dwarf galaxies including two galaxies in WDM halos that have experienced quenching events. The two
smallest galaxies have SFH that are outliers and have no observational equivalent where over 90% of stars are formed after z = 1.

Figure 7. The density profile ratios of halos in the hydrodynamical simulations compared to DMO simulations. To first order, the stellar
mass of the galaxy in WDM (left panel) and CDM (right panel) is correlated with the suppression of the central DM density from stellar
feedback e↵ects. Halo H, Halo M, and Halo E illustrate the second order e↵ects that present slightly more complicated interpretations.
Halo H is undergoing a recent merger that raises the density ratio to ⇠ 1 at r = 500 pc, while maintaining the central density reduction
at r < 500 pc. Halo M (hosting a larger galaxy) quenches early at z ⇠ 3, so its density ratio at r = 200 pc is greater than Halo E (hosting
a smaller galaxy) which has formed nearly all of its stars since z 1.

MNRAS 000, 1–4 (2015)

r [kpc]
1 10

30% suppression in central density in WDM (dark matter only)
Additional suppression from star formation feedback
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Simulations of dwarf galaxies with SIDM + baryons

6 Victor H. Robles et al.

Figure 4. Dark matter density profiles for our FIRE-2 hydro simulations that form M? = 105.6�6.6M� (left panel) and for the most
massive galaxy (M? = 107M�; right panel). Dwarf galaxy haloes in CDM retain their cusp for M? < 106.6M�; only in our most massive
galaxy both CDM and SIDM display a large core (⇠ 1 kpc).

d log ⇢/d log r of the hydro (filled symbols) and DMO (empty
symbols) simulations as a function of the stellar mass of
the galaxy (top row). Also shown is the slope of the pro-
files versus radial distance from the halo centers (bottom
row), with arrows marking the stellar half-mass radii for
each halo. For the estimation of the central slope, we var-
ied the fitting range and the bin size and found slopes that
do not di↵er by more than 0.1 dex; this uncertainty is ac-
counted for by the size of the symbols in the figure. We find
that only one of the CDM-Hydro simulations in our sample
truly becomes “cored” (defined here as ↵ > �0.3), and even
then, this happens only at very small radii (r . 300 pc). As
the stellar mass of the galaxies decreases, the inner slopes
in the CDM-Hydro simulations decrease to the mild-cusp
�0.6 6 ↵ < �0.3 and to the cuspy region (↵ < �0.6). The
cuspy inner slopes in the CDM-DMO runs remain largely
una↵ected by stellar feedback from FIRE for galaxies with
logM?/M� < 6.2 and have only a mild change for the galaxy
with logM?/M� ⇠ 6.6.

In contrast, all SIDM simulations (DMO and Hydro)
exhibit central density cores. Despite varying in an order
of magnitude in M?, the SIDM-Hydro simulations all have
central density profiles with slopes of ↵ > �0.5. More im-
portantly, the slopes in the hydro runs closely follow their
DMO values, even for the highest stellar masses. The close
similarity between the density profiles of the SIDM-DMO
and SIDM-Hydro runs – including the similar shape of ↵(r)
across all values of M? – indicates that independently of
the galaxy mass and SFH, core formation and reduction
of central densities in SIDM simulations are set mainly by
dark matter physics rather than by galaxy formation physics
(for the cross section �/m = 1 cm2 g�1 studied here). This
provides a striking contrast to the major role that feed-
back plays in forming cores in CDM simulations. In fact,
the stellar mass dependence of the density profile slope in
CDM-Hydro simulations is seen at radii of up to ⇠ 1 kpc.

SIDM predictions regarding the central gravitational poten-
tial of M? ⇠ 106 M� dwarf galaxies appear relatively robust
to the e↵ects of stellar feedback, while CDM predictions de-
pend sensitively on it.

The changes in DM densities found in SIDM-Hydro ver-
sus CDM-Hydro simulations are quantified in more detail
in Figure 6, which shows the di↵erence in ↵(r) between
these runs. For the same FIRE physics, the SIDM densities
are more than 25% di↵erent from the CDM densities for
r < 500 pc (and can be over 50% di↵erent at 250 pc). This
ratio shows little dependence on M?. The left panel shows
that less massive galaxies exhibit larger di↵erences in the
slope, with the largest change happening within the SIDM
half-mass radii (where self-interactions form the core). The
smallest di↵erence in the slope occurs for the most massive
galaxy, as feedback in the CDM version of this halo is strong
enough to create a core similar to its SIDM analog.

3.4 Shapes

Many studies have shown that CDM haloes in DMO simula-
tions are triaxial (Vega-Ferrero et al. 2017; Schneider et al.
2012; Springel et al. 2004). SIDM haloes are expected to be
closer to spherical in the region for which self-interactions
are important, as the interactions tend to isotropize the
density distribution (Spergel & Steinhardt 2000; Kapling-
hat et al. 2014; Rocha et al. 2013; Peter et al. 2013; Zavala
et al. 2013; Elbert et al. 2015). The shapes of low-mass dark
matter haloes and their dwarf galaxies may therefore contain
important clues about the nature of dark matter.

We show a visualization of the DM distribution corre-
sponding to one of our simulations (m10d in Table 1) in
Figure 7. The SIDM-DMO run indeed exhibits a distinctive
roundness within the half-mass radius (⇠ 1 kpc), while the
CDM-DMO run is noticeably more triaxial. In both mod-
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(for the cross section �/m = 1 cm2 g�1 studied here). This
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tial of M? ⇠ 106 M� dwarf galaxies appear relatively robust
to the e↵ects of stellar feedback, while CDM predictions de-
pend sensitively on it.

The changes in DM densities found in SIDM-Hydro ver-
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in Figure 6, which shows the di↵erence in ↵(r) between
these runs. For the same FIRE physics, the SIDM densities
are more than 25% di↵erent from the CDM densities for
r < 500 pc (and can be over 50% di↵erent at 250 pc). This
ratio shows little dependence on M?. The left panel shows
that less massive galaxies exhibit larger di↵erences in the
slope, with the largest change happening within the SIDM
half-mass radii (where self-interactions form the core). The
smallest di↵erence in the slope occurs for the most massive
galaxy, as feedback in the CDM version of this halo is strong
enough to create a core similar to its SIDM analog.
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hat et al. 2014; Rocha et al. 2013; Peter et al. 2013; Zavala
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Bottom Line
There are a lot of ways to accommodate observations within ΛCDM, with 
varying degrees of “naturalness”. Can also get agreement using relatively 
minor modifications to DM (warm, self-interacting) with baryons. 

Fundamental question: (how) can we definitively test the ΛCDM model? 

My feeling: yes! …. but it’s hard. 

Simplest option: directly detect dark matter in the laboratory. However: 
“we have made excellent progress on not detecting WIMPs” (P. Sorensen)



Bottom Line
Simplest option: directly detect dark matter in the laboratory. However: 
“we have made excellent progress on not detecting WIMPs” (P. Sorensen) 

Next best option: look for fundamental prediction of ΛCDM model — 
dark matter structure below the mass scale of galaxies

Bullock & Boylan-Kolchin 2017

ALL known 
galaxies



The future (?): gravitational detection of “dark” (sub)halos

Absent a detection of dark matter particles, discovery of dark 
substructure is crucial for verifying the entire ΛCDM paradigm 

This is extremely difficult 
LSST + 30m telescopes + JWST

Y. Hezaveh / ALMA / HST



The future (?): gravitational detection of “dark” (sub)halosSUBSTRUCTURE IN SDP.81 15

Figure 11. The errorbars indicate the 95% confidence limits on the projected
differential number density of subhalos around SDP.81, derived using the
non-detection regions shown in Figure 10 and the detection of the 109 M�
subhalo. For comparison, the shaded band shows the 90% confidence region
from Dalal & Kochanek (2002).

Figure 12. Limits on the normalization (A) and slope (⌘) of the mass func-
tion dn/d logM = A(M/Mpivot)-⌘ , using the bounds in Figure 11. Here we
use Mpivot = 109M�. The grey contours show constraints derived using Equa-
tion (26), while the red contours show how the constraints change if we ne-
glect the marginally detected subhalo with M ⇡ 108M�. The top panel shows
the probability at ⌘ = 0.9. The red and black curves simply show a slice of
the probability of the lower panel at ⌘ = 0.9. For comparison, the histograms
show the distribution of A using assumptions based on ⇤CDM simulations
assuming two different values of csubs/chost, which are intended to be repre-
sentative. These values assume ⌘ = 0.9 and a distribution of host halo masses
and concentrations given by abundance matching. See Section 6 for details.

use the same set of high-resolution zoom-in simulations de-
scribed in Mao et al. (2015) with the addition of a very high-
resolution cosmological box, (40963 particles in a 400 Mpc/h
box, ds14_i) from the Dark Sky Simulations (Skillman
et al. 2014)14. This calibration is done by first assuming a
constant log–log slope (⌘), then finding the best-fit M0 for
each host halo in the simulations, and finally for all host ha-
los, finding the best-fit values of (↵,�,�) in

M0 = ↵M�
hostc

�
host. (28)

With this model, we can then predict the subhalo mass func-
tion given the host halo mass and concentration and the log–
log slope.

The subhalo abundance predicted in the procedure de-
scribed above is for all subhalos within the virial radius of the
host halo. To convert our prediction to the relevant quantity
probed by strong lensing measurements, we need to assume
a spatial distribution for the subhalos. Here we make three
simplifying assumptions: (1) the subhalo spatial distribution
is independent from the subhalo mass function (i.e., subhalos
of different mass halos have the same spatial distribution); (2)
the angular distribution of subhalos is isotropic (see, however,
Nierenberg et al. 2011); and (3) the radial distribution of sub-
halos within their host halos follows an NFW profile with a
characteristic concentration csubs. In other words, we assume
the subhalo abundance factorizes into a mass dependence and
radial dependence, n(M,r) = n(M) f (r), where the radial de-
pendence f (r) is an NFW profile of concentration csubs.

To predict the projected abundance of substructure, our
model requires a prescription for the concentration of the
subhalo distribution, csubs. In ⇤CDM simulations, gener-
ally the radial distribution of subhalos is less centrally con-
centrated than the dark matter distribution of the host halo
(i.e., csubs/chost < 1) (e.g., Nagai & Kravtsov 2005; Gao et al.
2012), and at small radii the subhalo distribution may become
shallower than an NFW profile (e.g., Xu et al. 2015a). Ob-
servational results for real galaxies are less clear: some are
consistent with csubs/chost ' 1 (e.g., Guo et al. 2012; Yniguez
et al. 2014), while others imply that galaxies are less concen-
trated (e.g., Hansen et al. 2005) than the total mass distribu-
tion in their hosts. Also note that our assumption of spher-
ical symmetry might lead us to underestimate the average
substructure abundance around lenses, since strong lenses are
preferentially viewed along the major axis of their host halos
(Rozo et al. 2007; Hennawi et al. 2007).

Given the uncertainty in predictions for csubs, we treat it as
a free parameter, along with other parameters describing the
lens halo: the host halo mass and concentration (Mhost, chost),
and the log–log slope (⌘) of the subhalo mass function. Us-
ing these model ingredients, we can predict dn/d logM pro-
jected at the Einstein radius. The histograms in the top panel
of Figure 12 show an example, the distribution of A, i.e.,
dn/d logM at M = 109M� computed with this model. For
this figure, we assume the mass function slope is ⌘ = 0.9, and
we show two possible values for the subhalo concentration,
csubs/chost = 0.2 and 1.0, which should span the range of un-
certainty described above. For the other two parameters, we
marginalize over possible values of the host halo mass and
concentration using the following prior. We first assign galaxy
luminosity to dark matter halos and subhalos with the abun-
dance matching technique (e.g., Conroy et al. 2006; Reddick
et al. 2013), and find the joint distribution of mass and con-

14
http://darksky.slac.stanford.edu

Hezaveh et al. 2016

Current detections: 
comparable in mass 
to Sagittarius / SMC



The future (?): star count detection of “dark” (sub)halos

Gaps in stellar streams: already indicate existence of dark substructure?

V. Belokurov, D. Erkal, S.E. Koposov (IoA, Cambridge) 

106 M⦿ subhalo 107.7 M⦿ subhalo



The future (?): star count detection of “dark” (sub)halos

This is extremely difficult

S.E. Koposov, D. Erkal, V. Belokurov (IoA, Cambridge) + SDSS data

“The number of background 
stars from the Milky Way has 
been reduced to make the 
stream more prominent.”



The future (?): star count detection of “dark” (sub)halos

4 S. Garrison-Kimmel et al.

Figure 1. Visualizations of dark matter (DM) in the Latte m12i halo. Coloring indicates log10 of the local dark matter density. From
left to right, the columns show the dark matter-only (DMO) simulation, the fully baryonic simulation using FIRE physics, and the dark
matter-only run that adds an analytic, embedded disk potential to the halo center (DM+disk), where the disk properties are matched
to the baryonic simulation. The top row illustrates a cube 500 kpc on a side, while the bottom row zooms in on a cube 100 kpc across.
The presence of the central galaxy (either real or embedded) leads to an enhancement in the DM density at the center. Substructure
counts are roughly similar on large scales in all cases (top row), but the tidal field of the central galaxy eliminates many subhalos within
⇠ 50 kpc (bottom row). Although the embedded disk potential does not capture all of the e↵ects of baryons, it does e↵ectively capture
subhalo depletion in the inner halo, where searches for dark substructure via lensing or stellar streams are most sensitive. We quantify
these di↵erences in Figures 2 – 3.

wide variety of observables, including the relationships be-
tween stellar mass and halo mass, the Kennicutt-Schmidt
law, bursty star formation histories, the star forming main
sequence (Hopkins et al. 2014), galactic winds (Muratov
et al. 2015, 2016), the gas and stellar phase M

?

-metallicity
relations (Ma et al. 2016b), the M

?

-size relation (El-Badry
et al. 2016), the HI content of galaxy halos at both low
and high redshift (Faucher-Giguère et al. 2015, 2016; Hafen
et al. 2016), and the structure and star formation histo-
ries of isolated dwarf galaxies (Oñorbe et al. 2015; Chan
et al. 2015; Fitts et al. 2016). Moreover, in simulations of
MW-mass halos, in addition to forming a realistic MW-like
galaxy in terms of stellar mass and disk morphology (Wetzel
et al. 2016; Ma et al. 2016a), the FIRE model yields reason-
able populations of dwarf galaxies around those galaxies, in
terms of the distributions of stellar masses and velocity dis-
persions, as well as a wide range of star formation histories
that agree well with those of the actual MW satellites.

Both m12i and m12f form thin, radially extended stellar
disks with M

?

(R < R90, z < z90) = 6.2⇥ 1010 M� and 7.5⇥
1010 M�, respectively, where R90 and z90 are the radius and

height that contain 90% of the mass. Thus, these galaxies
are comparable to, if slightly more massive than, the MW
in stars (Bland-Hawthorn & Gerhard 2016). At z = 0, the
total gas fraction, Mgas/(M?

+Mgas), within R90 and z90 is
13% for m12i and 15% for m12f.

The gravitational force softenings and kernel smooth-
ing lengths for gas particles are fully adaptive and con-
servative (following Price & Monaghan 2007). Hydrody-
namic smoothings and gravitational force softenings are al-
ways self-consistently matched. The minimum gas smooth-
ing/Plummer equivalent softening achieved in both simu-
lations is ✏gas,min = 1 pc (corresponding to a density of
ngas ⇡ 107 cm�3), thus ensuring that dense, star-forming
regions are well resolved. We choose softenings for the DM
particles to be comparable to the typical gas softening in the
host galaxy’s disk: ✏DM = 20 pc. The softenings for the stars
are ✏stars = 8 pc, chosen to match the gas softening at the
density threshold for star-forming regions, nsf > 1000 cm�3.
All (minimum) softening lengths quoted here are fixed in
physical units after z = 9, and evolve comoving with the
scale factor prior to that redshift. Each simulations is ini-

MNRAS 000, 1–19 (2017)

Dark Matter only + galaxy formation physics

Garrison-Kimmel et al. 2017

Potential complication: inner halo globular cluster streams are produced 
by disk shocking; same process destroys dark matter substructure. 

Ever notice that galactic disks destroy substructure of all kinds? Very sad and 
unfair. Ridiculous that this isn’t getting more ApJ covfefe. #dwdm17
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Globular Clusters as cosmological probes

L2 L. R. Spitler and D. A. Forbes

Here, we provide evidence for a direct correlation between the
mass of a GC system and its host galaxy halo mass. The direct
proportionality implies that GC system masses can be used to ap-
proximate the halo masses of individual galaxies.

2 DATA

This section documents the data sources and how galaxy halo
masses are approximated from their stellar masses. Halo mass
is defined as the total mass (baryon plus dark matter) within a
sphere containing an overdensity of 180 times the background
(Mandelbaum et al. 2006; van den Bosch et al. 2007). Litera-
ture virial masses are converted to the adopted definition of halo
mass using equation (15) in van den Bosch et al. (2007). A Hubble
parameter of h = 0.7 is adopted throughout.

As the Universe evolves, certain galaxies end up at the centre of
very massive galaxy clusters, while others enter these cluster haloes
as satellite galaxies. Haloes associated with central galaxies can be
significantly more massive than the halo around a satellite galaxy,
even when the stellar masses are identical (Mandelbaum et al. 2006).
Thus, a distinction between central and satellite galaxies must be
made when applying statistical relations involving stellar mass.
Such a distinction has not been made in related work (Peng et al.
2008; Spitler et al. 2008).

The present sample of galaxies is dominated by satellites and
galaxies that lie at the centre of haloes much smaller than those
hosting galaxy clusters. To avoid the cluster-sized haloes, which
occupy regions of high galaxy number densities, we employ general
relations between stellar and halo masses derived from isolated
environments. We assume that a halo in an isolated environment has
a similar stellar mass to a satellite halo of the same halo mass.

Fig. 1 shows two empirical halo mass relations derived from weak
galaxy–galaxy gravitational lensing analysis of galaxies in isolated
environments (Hoekstra et al. 2005; Mandelbaum et al. 2006). To
supplement the relation for low-mass galaxies, we use a restricted
form of a relation derived by van den Bosch et al. (2007) from
analysis of the conditional luminosity function. For this relation,
only galaxies of Mstellar < 5 × 1010 M⊙ are relevant, because at

Figure 1. Statistical relations between galaxy halo and stellar mass. The
green and cyan lines are from the weak gravitational lensing analysis of
galaxies in isolated environments by Mandelbaum et al. (2006; 1σ uncer-
tanties are given) and Hoekstra et al. (2005), respectively. The blue line
is the same for spiral galaxies (Mandelbaum et al. 2006). The orange line
comes from conditional luminosity function analysis (van den Bosch et al.
2007). The adopted relation is the thin red line with 1σ errors shown as the
grey region.

higher masses, the relation of van den Bosch et al. (2007) becomes
dominated by the cluster-sized haloes around central galaxies.

To use the Hoekstra et al. (2005) and van den Bosch et al. (2007)
relations in our analysis, we had to convert their galaxy luminosity
versus halo mass relation into one relating galaxy stellar mass to the
halo mass. Because our sample is dominated by massive elliptical
and lenticular galaxies, we assume a mass-to-light ratio correspond-
ing to a 12 Gyr stellar population and a metallicity of [Fe/H] =
+0.08. Although the low-mass galaxies in our sample likely re-
quire smaller mass-to-light ratios because they tend to be younger
and have lower metallicities, this effect is negligible (∼0.1–0.3 dex)
compared to the halo mass uncertainties for such galaxies.

With the weak lensing and conditional luminosity function con-
straints, we can create a general relation between galaxy stellar
(Mstellar) and halo masses (Mhalo). This is shown in Fig. 1 as the red
line and is defined as

Mstellar = Ms
(Mhalo/Mh)α+β

(1 + Mhalo/Mh)β
. (1)

This is the same form as used in Yang et al. (2008), with scaling
parameters: log Ms = 9.8, log Mh = 10.7, α = 0.6 and β = 2.9.
Halo masses for the spiral galaxies in our sample were estimated
using the spiral galaxy relation of Mandelbaum et al. (2006), also
shown in Fig. 1. Note that the data in Fig. 2 show a similar form
to the relationship adopted between galaxy stellar and halo mass
(Fig. 1), with only an offset in the x-axis values.

Galaxy stellar masses are taken from Spitler et al. (2008) and Peng
et al. (2008). For the Spitler et al. (2008) estimates, the Chabrier
(2003) initial stellar mass function is used to match the Mandelbaum
et al. (2006) relation. There is a small (0.07 dex in log Mstellar)
systematic offset between the masses derived using the Spitler et al.
(2008) technique and those published in Peng et al. (2008). This
offset is removed from the Peng et al. (2008) masses before analysis.

The GC system numbers in Spitler et al. (2008) were converted to
GC system total masses by multiplying the numbers by the average
GC mass of 4 × 105 M⊙. Peng et al. (2008) summed the total stellar
mass of all GCs in each galaxy. For galaxies in common, the Spitler
et al. (2008) GC masses were used because they come from wide-
field imaging where the entire spatial coverage of the GC system
was observed. The NGC 3311 GC system number estimate is from
Wehner et al. (2008). For reference, a table with relevant properties
of the main sample is available online at the CDS.

Figure 2. Galaxy stellar mass plotted against total GC system mass. The
red line is the adopted relation in Fig. 1, shifted in the x-axis by −4.15 dex
from the direct proportionality between halo and stellar mass given in the
text (equation 1). It illustrates how galaxy halo and GC system masses are
interchangeable.
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The GC system mass of Local Group (LG) dwarf galaxies is
estimated by summing the individual GC stellar masses inferred
from V-band photometry (Webbink 1985; Da Costa & Mould 1988;
Harris 1996) and applying a mass-to-light ratio of 2.2 for an old,
metal-poor stellar population (Bruzual & Charlot 2003). LG dwarf
galaxy stellar masses are from V band absolute magnitudes (Lotz,
Miller & Ferguson 2004) with appropriate mass-to-light ratios from
Bruzual & Charlot (2003) for the age and metallicity of the stellar
populations (Lotz et al. 2004). Total masses (Mtotal ∝ σ 2

0, where σ 0

is the central velocity dispersion) and distances to these galaxies
are from Mateo (1998).

The analysis includes five galaxy clusters selected because their
central galaxy has a reliable GC system number measurement avail-
able. GCs associated with galaxy clusters will reside in the cen-
tral cluster galaxy, around satellite galaxies and in the intracluster
medium (see Section 3). The total mass of GCs associated with satel-
lite galaxies was approximated by integrating the observed clus-
ter galaxy mass functions (Sandage, Binggeli & Tammann 1985;
Ferguson & Sandage 1991; Yagi et al. 2002; Trentham, Tully &
Mahdavi 2006) after convolving them with a quadratic fit to data in
Fig. 2. No global constraint on an intracluster GC population exists.
We therefore use a prediction from computer simulations of galaxy
clusters (Bekki & Yahagi 2006) that intracluster GCs make up
29 per cent (with rms = 5 per cent) of the total cluster GC mass,
independent of the clusters total mass. Because Bekki & Yahagi
(2006) a rudimentary GC formation prescription, formal uncertain-
ties on these total cluster GC masses are taken to be 40 per cent.
Cluster halo masses are taken from the following sources: Virgo and
Hydra clusters (Girardi et al. 1998), NGC 1407 (Brough et al. 2006),
Antlia (Nakazawa et al. 2000) and Fornax (Drinkwater, Gregg &
Colless 2001).

3 RESULTS

In Fig. 3, we show that GC system masses (MGCS) are directly
proportional to the total halo mass of its host galaxy, with a scatter
comparable to the observational uncertainties. The form of the line
in Fig. 3 is log Mhalo = log MGCS + 4.15. This can be related to
the initial total baryon mass of a galaxy, by assuming the universal
baryon fraction (i.e. Mbaryon/Mhalo ≈ "b/"m ≈ 0.17; Komatsu et al.
2008) applies on all galactic scales in the early Universe.

For galaxies with Mhalo > 5 × 1011 M⊙, the relationship in
Fig. 3 appears to be invariant to the local environment and the
morphological type of the galaxy (see discussion in Spitler et al.
2008). In contrast, the statistical relationships between stellar and
halo mass depend on whether the galaxy is a spiral or an elliptical
type (see Fig. 1). Furthermore, the statistical relationship between
galaxy stellar mass and the halo mass is strongly non-linear. This
means that for very massive galaxies their halo masses derived from
the stellar mass relation are poorly constrained.

The direct proportionality between GC system masses and their
host halo is consistent with our current understanding of GC forma-
tion. While stars in a galaxy can change with time and environment,
the GCs remain relatively immune to the evolutionary processes op-
erating on and within galaxies. In the early Universe, GCs simply
formed in proportion to the total amount of baryonic mass associ-
ated with a galaxy, which is directly related to its halo mass.

Computer simulations of GC system formation shows some dis-
agreement in the relationship between GC numbers and halo masses
(Kravtsov & Gnedin 2005; Bekki et al. 2008). It is noted that first
self-consistent modelling of star cluster formation and evolution in
a realistic galaxy potential was only recently accomplished (Hurley
& Bekki 2008).

Figure 3. Galaxy halo mass plotted against total GC system mass. Galaxy
halo masses are a measure of the total mass associated with a galaxy, in-
cluding both dark and baryonic matter. The data points are consistent with
the black line, which has a slope of unity. This implies that GCs formed
in direct proportion to the total halo mass of a galaxy: ∼0.007 per cent [or
log (MGCS/Mhalo) ∼ −4.15] of total halo masses are in the form of GCs.
Independent measures of the Milky Way and Andromeda halo masses are
consistent with the relation. Although the GCs immediately around cen-
tral cluster galaxies apparently do not follow the relation (black-ringed red
circles), the total GC mass associated with an entire galaxy cluster halo
(including GCs around satellite galaxies and between them) does (black cir-
cles). Local Group dwarf galaxies do not follow the trend at lower masses.
The apparent skewing of the main data set at low masses is due to a sample
bias in the galaxy stellar masses.

Diemand, Madau & Moore (2005) and Moore et al. (2006) as-
sumed GC formation sites were associated with rare density peaks
in the early CDM density field and made some predictions relating
the local epoch of reionization to certain GC system properties. In
particular, if reionization truncated GC formation throughout the
Universe at roughly the same time, they predicted that the GC sys-
tem numbers and hence masses should scale with the host galaxy
halo mass. In this context, our observations imply that, on average,
the absolute difference between the local epoch of reionization in
galaxies of different masses and/or environment was shorter than
typical GC formation time-scales (see also discussion in Weinmann
et al. 2007).

Two recent studies (Peng et al. 2008; Spitler et al. 2008) per-
formed a similar analysis to that shown here, echoing past work
with central cluster galaxies (Blakeslee, Tonry & Metzger 1997;
Mc Laughlin 1999). Although each study claimed evidence for a
direct proportionality between GC number and the halo mass of the
host galaxy, a comprehensive analysis has not been preformed until
now. Blakeslee et al. (1997) and Mc Laughlin (1999) focused on
very massive galaxies, but did not have access to total mass esti-
mates for lower mass galaxies. Spitler et al. (2008) preformed an
initial analysis on a subset of the present sample and found the halo
mass normalized GC numbers (VN) are constant. This is in dramatic
contrast to the trend of increasing relative GC system numbers when
normalized by galaxy luminosities (i.e. the GC specific frequency,
SN). Peng et al. (2008) found similar results. However, both Spitler
et al. (2008) and Peng et al. (2008) employed a statistical stellar–
halo mass relation contaminated with galaxy cluster-sized haloes
(see discussion in Section 2).

We can test the robustness of the relation presented in Fig. 1
by using independent halo mass measurements from direct
observations. Our own Milky Way Galaxy and the neighbouring
spiral galaxy, Andromeda, have halo measurements of 1 × 1012
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Globular Clusters as cosmological probes

populations must be made and are difficult to predict. To date,
these specific corrections have been made only for the BCGs in
Virgo (M87; see Durrell et al. 2014) and Coma (NGC 4874;
see Peng et al. 2011). Contrarily, Mh is not as affected because
the prescriptions for defining halo masses in central galaxies
such as BCGs (Hudson et al. 2015) include their extended
halos. The net result would be to leave negative residuals,
which is what we see for many of the highest-mass galaxies in
Figure 1. Most of these are missing in the more highly selected
sample of Figure 3. In the only two cases (Virgo, Coma) where
it has been possible to perform a wider-scale census of the GCs
in the entire cluster, this negative bias is also reduced.

In summary, we have no evidence that use of the entire GCS
catalog is preventing us from finding the necessary global
trends. With the BCG-related problem in mind, it appears
worthwhile to use the entire GCS catalog of data to investigate
other astrophysically interesting correlationswith GC metalli-
city and galaxy type. These are discussed in the next sections.

4. THE MASS RATIOS VERSUS METALLICITY AND
MORPHOLOGY

4.1. Cluster Metallicity: Blue versus Red

In most galaxies, the GC metallicity or color distribution has
a bimodal shape with the blue (metal-poor) and red (metal-
rich) modes often partially overlapping. The population
fractions are f N N(red) (tot)red = and f f1blue red= − . With
the assumption that the mass distribution functions for both
blue and red GCs are the same, then we also have
f M M(red)red GCS GCS= (see Ashman et al. 1995; Larsen
et al. 2001; Tamura et al. 2006; Villegas et al. 2010). The
blue mode is centered near Fe H〈 〉 1.5≃ − and the red mode
near Fe H 0.5〈 〉 ≃ − , though the peaks of both modes show
second-order increases with galaxy luminosity (Brodie &
Strader 2006; Peng et al. 2006; Forte et al. 2009). The dividing
line between the blue and red modes is conventionally defined
as the central minimum in the color or metallicity histogram,
which usually lies near [Fe/H] 1.0≃ − , as it does in the
Milky Way.

We have inspected the literature sources for all galaxies in
the HHA13 catalog and wherever possible extracted the
fractions fred. These values will be listed in the next catalog
release. In many cases, the individual studies already list fred,
usually derived from a double-Gaussian fit to the color or
metallicity distribution. In a few papers, we have reconstructed
them from the available data. For almost half the list, however,
the red/blue ratios could not be determined because the
photometric studies were carried out in single filters, or the
sample size was too small, or the color indices were not precise
enough to identify bimodality clearly. Any GCSs measured
through only the SBF method are also excluded. The net result
is a list of fred values for 219 catalog galaxies, of which 175
have calculated halo massesMh and 14 are BCGs. We label this
the “best” subsample of catalog data.5

The MGCS–Mh correlation for this selected data set is shown
in Figure 4, for which we find a best-fit solution
M MhGCS

1.03 0.03∼ ± . The residual scatter is 0.3 dex, similar to
the quality of fit for the Virgo subsample (Figure 2) but with

the advantage that the higher-luminosity range of galaxies is
more thoroughly covered. Interestingly, many of the BCG and
other giant galaxies that had negative residuals in Figure 1 have
dropped out of Figure 4. Some of these large, distant galaxies
had lower-quality data that prevented blue and red fractions
from being determined reliably, and some were measured with
the SBF technique that automatically excludes them from the
red/blue plot. The distribution of η for these 175 galaxies is
shown in Figure 5. The weighted-mean value of the mass ratio
is log 4.47 0.07η〈 〉 = − ± (listed in the last line of Table 1).
In Figure 5, we also show a running median value of η in

bins of 12 galaxies each, where the successive bins are stepped
through the list sorted by Mh. The median does not deviate far
from constη ≃ , and we conclude for the present that the simple
linear form M MhGCS ∼ cannot be ruled out by the data. The
range of most concern is probably the high-mass end
M M10h

13≳ ⊙, where most of the points fall below the global
average. However, too much significance should not be put on
these biggest, highest-mass points for at least two reason-
s.First, a slight change in the adopted power-law slope of the

Figure 4. Correlation of MGCS withMh for the “best” subsample of 175
galaxies as defined in the text. BCGs are shown as the magenta open symbols
at upper right, and the best-fit line has a slope of 1.03 ± 0.03. The green line
and shaded region at bottom are as defined in Figure 1.

Figure 5. Mass ratio of the GCS to the halo mass η vs.halo massfor the 175
selected galaxies with the best data (see text). BCGs are shown as magenta
open circles. The green line marks a running median value of η calculated in
bins of 12 galaxies each.

5 The “best” sample is defined as the galaxies for which the source
photometry was good enough to determine the red and blue GC
fractions,though these are not necessarily the ones with the smallest nominal
error bars on NGC.
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Figure 2. Left: A comparison of the halo mass contained within progenitors above given thresholds at z = 6 (Mprog,X; solid lines) with the average mass of a
halo’s main progenitor at z = 6 (dashed line), both relative to the z = 0 halo mass. While the ratio of most massive progenitor to z = 0 mass declines with
Mhalo(z = 0), Mprog,X/Mhalo(z = 0) is essentially constant over the entire range. Furthermore, the absolute value of Mprog,X/Mhalo(z = 0) only di�ers by a
factor of ⇡ 2 across 2 decades in threshold mass. Models directly relating Mprog,X to MGCs naturally reproduce the observed correlation between MGCs and
Mhalo(z = 0). Right: The sum of Mhalo over all progenitors with Mhalo(z = 6) > Mmin = 1.07 ⇥ 109 M� as a function of Mhalo(z = 0). The dashed line
shows Mprog,9.03 / Mhalo(z = 0). For Mhalo � Mmin, there is a one-to-one correlation. At lower masses, the halo-to-halo scatter becomes relevant, and below
Mvir(z = 0) ⇡ 3⇥ 1010 M� , many z = 0 halos do not have even 1 progenitor above Mmin. See Eq. (24) for a fitting formula for Mprog,9.03 given Mhalo(z = 0).

as a function of halo mass is simply the sum of the mass in GCs in
progenitors above Mmin (ignoring, for now, GC disruption):

MGCs(z = 0) =
’
i

M

i
GCs(z = 6) , (8)

where the sum is performed over all progenitors having M

i
halo(z =

6) > Mmin. The average mass in globular clusters in a halo as a
function of Mhalo(z = 0) will be

hMGCs |Mhalo(z = 0)i =
’
i

hMGCs |Mi
halo(z = 6)i (9)

= hmGC(z = 0)i
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i
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i
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!
(10)

⌘ hmGC(z = 0)i
Mprog,X(z = 6)

Mmin
. (11)

In other words, the total mass of globular cluster stars in a halo of
mass Mhalo at z = 0 is directly related to the sum of the masses
of all its progenitor halos with M(z = 6) > Mmin. In the nomen-
clature I adopt, Mprog,X is the sum in progenitors at z = 6 with
log10(M/M�) > X .

The minimum mass of a halo hosting a GC at high, Mmin, is
given by Mmin = 10X (by definition). Equating Eq. 3 and Eq. 11,
we obtain

Mmin =
hmGCi
⌘b

Mprog,X
Mhalo(z = 0) = 1010

M�
Mprog,X

Mhalo(z = 0) , (12)

where the second equality follows from my default assumptions of
mGC = 2.5 ⇥ 105

M� and ⌘b = 2.5 ⇥ 10�5. Note that Eq. 12 is
sensitive to the combination hmGCi/⌘b and that there is implicit
dependence on Mmin in Mprog,X.

The full results of the merger trees give Mprog,X(Mmin): at

z = 6, the dependence of Mprog,X on Mmin can be approximated by

Mprog,X
Mhalo(z = 0) = 0.11 (Mmin/109

M�)�0.184 (13)

to better than 5% accuracy over the range 107.5 < Mmin/M� <
109.5. I therefore obtain

Mmin(z = 6) ⇡ 1.07 ⇥ 109
M� (14)

(i.e., X = 9.03). As is shown in Figure 2, such a model actually does
give a linear correlation with Mvir(z = 0), essentially irrespective
of the mass threshold (Mmin) chosen.

A model in which globular clusters populate all dark matter
halos above Mmin(z = 6) ⇡ 109

M� in direct proportion to
Mhalo(z = 6) naturally reproduces the observed Mhalo � MGCs
relation at z = 0.

Eq. 12 can be split into dependence on dark matter proper-
ties [through Mprog,X/Mhalo(z = 0)] and baryonic properties (via
hmGCi/⌘b). Any redshift dependence enters solely through the re-
lationship between the mass in collapsed progenitors above a given
threshold at redshift z (Mprog,X). In this work, I assume that the
epoch of blue globular cluster formation ends at z = 6, and there-
fore this is the relevant redshift. It is straightforward to quantify the
redshift dependence of Eq. 12, however: I find

log10(Mmin(z)/M�) = �0.165 z + 10.04 . (15)

Figure 3 shows how Mmin depends on the inferred epoch of
globular cluster formation. The redshift evolution of Mmin is can
be well-approximated by the redshift evolution of the most massive
progenitor of halos having Mvir(z = 0) ⇡ 3⇥1010

M� . Independent
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Can we use globular clusters to map out the low-mass edge of 
galaxy formation in statistical samples of galaxies?



Summary
• On large scales, the Universe is well-described by ΛCDM. Several 

issues exist on smaller (sub-galactic scales): nearby galaxies are 
generically less abundant & less dense than naive predictions of ΛCDM. 

• Mvir=1010 M⦿ (M★ ~ 3x106 M⦿) is a crucial scale for galaxy formation and 
testing ΛCDM 

• If cores are robust in generic for low-mass galaxies, we may need to 
move beyond ΛCDM: WDM, SIDM, something else? 

• Searching for star-less dark matter halos should be the highest 
priority for astrophysical dark matter investigations. Gravitational 
lensing, star stream gaps are potential ways forward; worth considering 
new approaches, given the stakes.

ARA&A review on small-scale problems for ΛCDM (with J. Bullock, 2017); KITP program on 
small-scale structure of Cold (?) Dark Matter, Spring 2018 (lead organizer: J. Navarro)



Questions for discussion
• What is the low-mass threshold for galaxy formation, in terms of Mhalo? 

• Is there any evidence for star formation below the atomic cooling limit? 

• Can we come up with consistent definitions for halo mass? 

• How seriously should we be taking the results of any individual 
numerical simulation? 

• How sensitive are dwarfs’ properties to, e.g., T and z of reionization? 

• What are new ways of searching for the low-mass (star-less) halos that 
must be present if ΛCDM is correct? 

• What can globular clusters teach us about cosmology? 

• How the *%$# can we understand objects like Crater 2 in ΛCDM? 

• Is dark matter related to the hierarchy problem of the Standard Model?




