Dark Matter at Low Acceleration

Matthew G. Walker Carnegie Mellon University

Cleveland 7 June 2017

ONE LAW TO RULE THEM ALL: THE RADIAL ACCELERATION RELATION OF GALAXIES

FEDERICO LELLI^{1,2,*}, STACY S. MCGAUGH¹, JAMES M. SCHOMBERT³, AND MARCEL S. PAWLOWSKI^{1,4,†}

¹Department of Astronomy, Case Western Reserve University, Cleveland, OH 44106, USA

²European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748, Garching, Germany

³Department of Physics, University of Oregon, Eugene, OR 97403, USA

⁴Department of Physics and Astronomy, University of California, Irvine, CA 92697, arXiv:1610.08981v2

Draft version January 25, 2017

The feeble giant. Discovery of a large and diffuse Milky Way dwarf galaxy in the constellation of Crater^{*}

G. Torrealba¹, S.E. Koposov¹, V. Belokurov¹ & M. Irwin¹ ¹Institute of Astronomy, Madingley Rd, Cambridge, CB3 0HA

arXiv:1601.07178v4

CRATER 2: AN EXTREMELY COLD DARK MATTER HALO*

NELSON CALDWELL¹, MATTHEW G. WALKER², MARIO MATEO³, EDWARD W. OLSZEWSKI⁴, SERCEY KOPOSOV⁵, VASILY BELOKUROV⁵, GABRIEL TORREALBA⁵, ALEX GERINGER-SAMETH² AND CHRISTIAN I. JOHNSON¹

Caldwell et al. arXiv:1612.06398

Caldwell et al. arXiv:1612.06398

RECONCILING DWARF GALAXIES WITH ACDM COSMOLOGY: SIMULATING A REALISTIC POPULATION OF SATELLITES AROUND A MILKY WAY-MASS GALAXY

ANDREW R. WETZEL^{1,2,3,8,9}, Philip F. Hopkins¹, Ji-hoon Kim^{1,4,10}, Claude-André Faucher-Giguère⁵, Dušan Kereš⁶, and Eliot Quataert⁷

Draft version August 9, 2016

MOND PREDICTION FOR THE VELOCITY DISPERSION OF THE 'FEEBLE GIANT' CRATER II

STACY S. McGaugh¹

¹Department of Astronomy, Case Western Reserve University, Cleveland, OH 44106

ABSTRACT

Crater II is an unusual object among the dwarf satellite galaxies of the Local Group in that it has a very large size for its small luminosity. This provides a strong test of MOND, as Crater II should be in the deep MOND regime $(g_{in} \approx 34 \text{ km}^2 \text{ s}^{-2} \text{ kpc}^{-1} \ll a_0 = 3700 \text{ km}^2 \text{ s}^{-2} \text{ kpc}^{-1})$. Despite its great distance ($\approx 120 \text{ kpc}$) from the Milky Way, the external field of the host $(g_{ex} \approx 282 \text{ km}^2 \text{ s}^{-2} \text{ kpc}^{-1})$ comfortably exceeds the internal field. Consequently, Crater II should be subject to the external field effect, a feature unique to MOND. This leads to the prediction of a very low velocity dispersion: $\sigma_{efe} = 2.1^{+0.9}_{-0.6} \text{ km s}^{-1}$.

Keywords: dark matter — galaxies: dwarf — galaxies: kinematics and dynamics

MGW et al.

$$g_{\rm obs} = \frac{g_{\rm bar}}{1 - \exp[-\sqrt{g_{\rm bar}/g_{\dagger}}]}$$

$$g_{\text{obs,EG}} = g_{\text{bar}} + \sqrt{\frac{g_{\dagger}}{r^2}} \frac{\mathrm{d}}{\mathrm{d}r} (r^3 g_{\text{bar}})$$

MGW et al.

MGW et al.

Organized Chaos: Scatter in the relation between stellar mass and halo mass in small galaxies

Shea Garrison-Kimmel^{1*}, James S. Bullock², Michael Boylan-Kolchin³,

Emma Bardwell⁴

¹TAPIR, California Institute of Technology, Pasadena, CA 91125, USA

²Center for Cosmology, Department of Physics and Astronomy, University of Ca

³Department of Astronomy, The University of Tezas at Austin, 2515 Speedway, 5

⁴Case Western Reserve University, Cleveland, Ohio 44106, USA

 $M_{\star} \propto M_{\rm halo}^{lpha}$

 $\alpha_{\rm sats} \cong 0.14\sigma^2 + 0.14\sigma + 1.79$

Going, going, gone dark: Quantifying the Scatter in the Faintest Dwarf Galaxies

Ferah Munshi^{1,2}, Alyson M. Brooks¹, Elaad Applebaum¹, Daniel R. Weisz³, Fabio Governato⁴, Thomas R. Quinn⁴

MAGELLAN/M2FS SPECTROSCOPY OF TUCANA 2 AND GRUS 1*

MATTHEW G. WALKER¹, MARIO MATEO², EDWARD W. OLSZEWSKI³, SERGEY KOPOSOV⁴, VASILY BELOKUROV⁴, PRASHIN JETHWA⁴, DAVID L. NIDEVER^{2,5}, VINCENT BONNIVARD⁶, JOHN I. BAILEY III², ERIC F. BELL², SARAH R. LOEBMAN²

Draft version November 19, 2015

ID	α ₂₀₀₀ [hh:mm:ss]	δ_{2000} [°:':'']	g [mag]	r [mag]	HJD ^b [days]	S/N ^c	$[\mathrm{km \ s}^{-1}]^{d}$	T _{eff} [K]	$\frac{\log_{10}[g/(\text{cm/s}^2)]}{[\text{dex}]^d}$	[Fe/H] [dex]	P _{member}
Tuc2-006	22:51:43.06	-58:32:33.7	18.78	18.12	7221.82	11.9 ^H	$-128.5 \pm 0.7^{(0.0,3.3)}$	$5050 \pm 149^{(0.2,3.0)}$	$1.92 \pm 0.38^{(-0.2,3.1)}$	$-2.48 \pm 0.19^{(0.1,2.9)}$	1.00 ± 0.00
					7278.50	14.5 ^H	$-127.9 \pm 0.8^{(0.6,4.4)}$	$4985 \pm 141^{(0.3,3.1)}$	$1.96 \pm 0.50^{(-0.1,2.6)}$	$-2.77 \pm 0.18^{(0.3,2.9)}$	
Tuc2-011	22:51:50.28	-58:37:40.2	18.27	17.57	7221.82	18.9 ^H	$-127.6 \pm 0.5^{(0.1,2.9)}$	$4779 \pm 101^{(0.4,3.1)}$	$2.04 \pm 0.23^{(-0.1,3.2)}$	$-2.42 \pm 0.14^{(0.3,2.9)}$	1.00 ± 0.00
					7278.50	17.8 ^H	$-127.0 \pm 0.5^{(-0.1,3.0)}$	$4728 \pm 93^{(0.4,3.2)}$	$1.30 \pm 0.28^{(-0.1,2.9)}$	$-2.35 \pm 0.12^{(0.3,3.1)}$	
Tuc2-022	22:52:21.38	-58:31:07.3	19.52	18.93	7221.82	6.4 ^H	$-120.2 \pm 2.0^{(-0.2,2.8)}$	$5322 \pm 171^{(0.1,3.0)}$	$1.95 \pm 0.73^{(-0.0,2.5)}$	$-2.42 \pm 0.26^{(-0.1,2.9)}$	1.00 ± 0.00
Tuc2-033	22:51:08.32	-58:33:08.1	18.68	17.97	7221.82	11.6 ^H	$-126.4 \pm 0.5^{(-0.3,3.1)}$	4814 ± 118 ^(0.3,3.0)	$1.26 \pm 0.29^{(-0.3,3.1)}$	$-2.21 \pm 0.16^{(0.2,2.9)}$	1.00 ± 0.00
					7278.50	12.4 ^H	$-128.5 \pm 0.5^{(-0.2,3.0)}$	$4538 \pm 109^{(0.2,3.0)}$	$1.28 \pm 0.29^{(-0.1,3.0)}$	$-2.56 \pm 0.15^{(0.3,3.0)}$	
Tuc2-047	22:52:22.99	-58:27:51.0	20.91	20.37	7221.82	6.8 ^M	$-140.1 \pm 7.2^{(-0.5,4.5)}$	$5561 \pm 204^{(0.2,3.0)}$	$1.79 \pm 0.91^{(0.2,2.5)}$	$-1.60 \pm 0.32^{(-0.2,3.5)}$	0.88 ± 0.12
Tuc2-052	22:50:51.63	-58:34:32.5	18.83	18.17	7221.82	9.8 ^H	$-122.8 \pm 0.7^{(-0.1,3.5)}$	$5206 \pm 166^{(0.1,3.0)}$	$1.95 \pm 0.50^{(-0.3,3.0)}$	$-2.61 \pm 0.21^{(0.0,2.8)}$	1.00 ± 0.00
					7278.50	11.6 ^H	$-123.9 \pm 0.9^{(0.7,4.2)}$	$4966 \pm 149^{(0.3,3.1)}$	$1.86 \pm 0.47^{(-0.1,2.8)}$	$-2.71 \pm 0.19^{(0.2,3.0)}$	
Tuc2-074	22:53:06.67	-58:31:16.0	19.19	18.77	7221.82	9.4 ^H	$-126.0 \pm 1.5^{(0.0,3.4)}$	5877 ± 210 ^(0.1,2.9)	$2.23 \pm 0.68^{(-0.2,2.7)}$	$-1.87 \pm 0.25^{(-0.1,2.9)}$	0.95 ± 0.09
					7278.50	7.6 ^H	$-130.3 \pm 1.8^{(-0.0,2.9)}$	$5887 \pm 211^{(0.2,3.0)}$	$2.00 \pm 0.79^{(0.1,2.4)}$	$-1.75 \pm 0.27^{(-0.1,2.9)}$	
Tuc2-078	22:50:41.07	-58:31:08.3	18.62	17.97	7221.82	8.9 ^H	$-135.0 \pm 0.9^{(0.1,3.1)}$	$5090 \pm 149^{(0.3,3.0)}$	$2.11 \pm 0.41^{(-0.3,3.2)}$	$-2.14 \pm 0.19^{(0.1,2.9)}$	0.99 ± 0.04
					7278.50	11.3 ^H	$-135.8 \pm 0.8^{(-0.2,3.4)}$	$4936 \pm 133^{(0.3,3.1)}$	$1.96 \pm 0.35^{(-0.2,3.1)}$	$-2.22 \pm 0.17^{(0.2,2.9)}$	

 TABLE 1

 M2FS Stellar Spectroscopy of Tucana 2 and Gru 1^a

Summary

» dSphs on gobs(gbar) are a mess. » mass loss, core formation, binary stars, external field, ...

- » At lowest observed accelerations, Cra2, (& AndXIX) agree with MOND
- » CDM requires Cra2 to have lost significant halo mass. This is a testable prediction.
- » other known low-acceleration targets: Indus 2, Tucana 2, Tucana 4