ASTR 120
Fall 2006
Homework Assignment No. 2 - Solutions

1. (a) The Moon's sidereal angular velocity (rate of rotation):

$$
\begin{gathered}
\omega=\frac{360^{\circ}}{27.3 \text { days }}=\frac{360^{\circ}}{27.3 \text { days } \times 1440 \mathrm{~min} / \mathrm{day}}=9.16 \times 10^{-3} \mathrm{~min}^{-1} \\
t=\frac{.5^{\circ}}{\omega}=\frac{.5^{\circ}}{9.16 \times 10^{-3} \mathrm{~min}^{-1}}=54.6 \text { minutes }=.91 \mathrm{hrs}
\end{gathered}
$$

(b)

$$
\theta=\omega t=9.16 \times 10^{-3} \mathrm{~min}^{-1} \times(12 \mathrm{hrs} \times 60 \mathrm{~min} / \mathrm{hr})=6.59^{\circ}
$$

Yes. As per the hinted fig. (1-10) such a change in angle is easily visible/measurable with the naked eye.
2. A sidereal month is ~ 27.3 days and a synodic ~ 29.5.

So there are (365.25 days/year) $/ 27.3$ days ~ 13.38 sidereal months in a year and there are $(365.25$ days/year $) / 29.5$ days $=12.38$ synodic months in a year.
Thus there is ~ 1 more sidereal than synodic month per year.
3. $\mathrm{F}=\mathrm{ma}=3 \mathrm{~kg} \times 2 \mathrm{~m} / \mathrm{s}^{2}=6$ Newtons
and $\frac{2 F}{m}=2 a=4 \mathrm{~m} / \mathrm{s}^{2}$
4. (a) Total major axis $=2 \mathrm{AU}+6 \mathrm{AU}$, so semi-major axis, $a=\frac{2+6}{2}=4 A U$
(b) Kepler's 2nd Law: $P^{2}=a^{3}=(4 A U)^{3}=64$

So $P=\sqrt{64}=8 \mathrm{yrs}$
Extra "A":
(a) Ceres' semi-major axis: $a=\frac{2.99+2.55}{2}=2.77 A U$
(b) $P^{2}=a^{3}=(2.77 A U)^{3}=21.25$ So $P=\sqrt{21.25}=4.61 \mathrm{yrs}$
5. (a) Again, use Kepler's 2nd Law: $\mathrm{P}=64 \mathrm{yrs}$

So... $a=P^{\frac{2}{3}}=64^{\frac{2}{3}}=16 A U$
(b) Aphelion distance $\left(d_{A p}\right)+$ Perihelion distance $\left(d_{P e r}\right)=2 \mathrm{a}$

In this case: $d_{P e r}=2 a-d_{A p}=(2 \times 16)-31.5=.5 A U$
Extra "B': $a=P^{\frac{2}{3}}=2500^{\frac{2}{3}}=184.2 \mathrm{AU}$
$d_{A p}=2 a-d_{P e r}=(2 \times 184.2)-.9=367.5 A U$
6. Gravitational acceleration: $g=\frac{G M}{R^{2}}$

On this other planet $M_{\text {Planet } X}=4 M_{\oplus}$ and $R_{\text {Planet } X}=4 R_{\oplus}$ so

$$
g_{\text {Planet } X}=\frac{G M_{\text {Planet } X}}{R_{\text {Planet } X}^{2}}=\frac{G\left(4 M_{\oplus}\right)}{\left(4 R_{\oplus}\right)^{2}}=\frac{g_{\oplus}}{4}
$$

Extra "C":

Phobos:

$M_{\text {Phobos }}=1.1 \times 10^{16} \mathrm{~kg}, D_{\text {Phobos }}=23 \mathrm{~km}$ (I chose the middle value...)
Convert these to "Earth Masses" and "Earth Radii":
$M_{\text {Phobos }}=\frac{1.1 \times 10^{16} \mathrm{~kg}}{5.9 \times 10^{24} \mathrm{~kg} / M_{\oplus}}=1.86 \times 10^{-9} M_{\oplus}$
$R_{\text {Phobos }}=.5 \times D_{\text {Phobos }}=\frac{(.5 \times 23 \mathrm{~km})}{6378.137 \mathrm{~km} / R_{\oplus}}=1.8 \times 10^{-3} R_{\oplus}$

$$
g_{\text {Phobos }}=\frac{G M_{\text {Phobos }}}{R_{\text {Phobos }}^{2}}=\frac{G\left(1.86 \times 10^{-9} M_{\oplus}\right)}{\left(1.8 \times 10^{-3} R_{\oplus}\right)^{2}}=5.74 \times 10^{-4} g_{\oplus}
$$

Callisto:
$M_{\text {Callisto }}=1.077 \times 10^{23} \mathrm{~kg}=\frac{1.077 \times 10^{23} \mathrm{~kg}}{5.9 \times 10^{24} \mathrm{~kg} / M_{\oplus}}=1.83 \times 10^{-2} M_{\oplus}$
$D_{\text {Callisto }}=4800 \mathrm{~km} ; R_{\text {Callisto }}=.5 \times D_{\text {Callisto }}=\frac{(.5 \times 4800 \mathrm{~km})}{\left(6378.137 \mathrm{~km} / R_{\oplus}\right)}=3.76 \times 10^{-1} R_{\oplus}$

$$
g_{\text {Callisto }}=\frac{G M_{\text {Callisto }}}{R_{\text {Callisto }}^{2}}=\frac{G\left(1.83 \times 10^{-2} M_{\oplus}\right)}{\left(3.76 \times 10^{-1} R_{\oplus}\right)^{2}}=1.29 \times 10^{-1} g_{\oplus}
$$

Titan:
$M_{\text {Titan }}=1.34 \times 10^{23} \mathrm{~kg}=\frac{1.34 \times 10^{23} \mathrm{~kg}}{5.9 \times 10^{24} \mathrm{~kg} / M_{\oplus}}=2.27 \times 10^{-2} M_{\oplus}$
$D_{\text {Titan }}=5150 \mathrm{~km} ; R_{\text {Titan }}=.5 \times D_{\text {Titan }}=\frac{(.5 \times 5150 \mathrm{~km})}{\left(6378.137 \mathrm{~km} / R_{\oplus}\right)}=4.04 \times 10^{-1} R_{\oplus}$

$$
g_{\text {Titan }}=\frac{G M_{\text {Titan }}}{R_{\text {Titan }}^{2}}=\frac{G\left(2.27 \times 10^{-2} M_{\oplus}\right)}{\left(8.075 \times 10^{-1} R_{\oplus}\right)^{2}}=0.139 g_{\oplus}
$$

7.

$$
\begin{aligned}
& F_{\text {Saturn }}=\frac{G M_{\odot} M_{\text {Saturn }}}{d_{\text {Saturn }}^{2}}=\frac{G M_{\odot}\left(100 M_{\oplus}\right)}{\left(10 d_{\oplus}\right)^{2}}=F_{\oplus} \\
& a=\frac{F}{m} \quad \text { so } \quad a_{\text {Saturn }}=\frac{F_{\text {Saturn }}}{m_{\text {Saturn }}} \quad \text { and } \quad a_{\oplus}=\frac{F_{\oplus}}{m_{\oplus}}
\end{aligned}
$$

Since $M_{\text {Saturn }}=100 M_{\oplus} \quad a_{\text {Saturn }}=\frac{a_{\oplus}}{100}$

Extra Credit:

1. The period is one day.
2. Use Newton's form of Kepler's 2nd Law: $P^{2}=\frac{4 \pi^{2}}{G M_{\oplus}} a^{3}$ (we can ignore $\mathrm{M}_{\text {Satellite }}$ in the denominator since $M_{\oplus} \gg M_{\text {Satellite }}$) so

$$
\begin{gathered}
a=\left(P^{2} \frac{G M_{\oplus}}{4 \pi^{2}}\right)^{1 / 3}= \\
\left(\left(1 \text { day } \times 8.64 \times 10^{4} \mathrm{sec} / \mathrm{day}\right)^{2} \frac{\left(6.67 \times 10^{-8} d y n \mathrm{~cm}^{2} \mathrm{~g}^{-2}\right)\left(5.9 \times 10^{27} \mathrm{~g}\right)}{4 \pi^{2}}\right)^{1 / 3}= \\
4.2 \times 10^{9} \mathrm{~cm}=4.2 \times 10^{4} \mathrm{~km}
\end{gathered}
$$

3. If its orbit was inclined with respect to Earth's equator then the point directly under the satellite would not remain the same; it would oscillate in latitude even if the orbit was synchronous with the Earth's rotation.
Think about the Sun's motion in the sky; it changes in latitude (i.e. the sub-solar point does) due to the fact that Earth's axis is tilted 23.5 degrees.
Also, don't be confused into thinking that only a geosynchronous orbit can have a one day period; that's not correct.
