## Cosmology

## and Large Scale Structure



Today Distance Scale

## Distance Scale

## So why do we need to get this right?

Astrophysics.

- turn observed properties of objects (apparent magnitude, angular size) into intrinsic properties of objects (luminosity, physical size)
Measure $H_{0}$ :
- Cosmological parameter, want local, independent confirmation of cosmological measurements at high redshift.
- Once measured, can use it as a distance indicator (Hubble distance: $\mathrm{d}=\mathrm{v} / \mathrm{H}_{0}$ )
Measure peculiar motions in the universe:
- $\mathrm{v}_{\text {obs }}=\mathrm{H}_{0} \mathrm{~d}+\mathrm{v}_{\text {pec }}$
- if we know distance independent of redshift, we can look for large scale velocity structure in the universe


## Important Complications:

- An accurate measure of $\mathrm{H}_{0}$ means getting out to a distance where $v_{\text {pec }} \ll \mathrm{H}_{0} \mathrm{~d}$.
- Local galaxies do not have useful Hubble distances, due to peculiar motions and Virgocentric flow
- Distances within clusters (ie with accuracies of +/- few Mpc) are not knowable via Hubble's law.
- Need several distance estimators to reduce systematic errors between methods.


Distance Scale Ladder

## Distance Scale

- Solar System
- earth-sun distance
- Trigonometric Parallax
- statistical \& secular parallax; moving clusters
- Main Sequence Fitting
- Bright Star Standard Candles
- Cepheids, RR Lyraes, TRGB
- Secondary Distance Indicators
- Type Ia SN, Tully-Fisher, Fundamental Plane, SB Fluctuations
- Absolute Methods
- Gravitational lens time delay, SZ effect, water masers



## Distance Scale

- Solar System
- earth-sun distance
- Trigonometric Parallax
- statistical \& secular parallax; moving clusters
- Main Sequence Fitting
- Bright Star Standard Candles
- Cepheids, RR Lyraes, TRGB
- Secondary Distance Indicators
- Type Ia SN, Tully-Fisher, Fundamental Plane, SB Fluctuations
- Absolute Methods
- Gravitational lens time delay, SZ effect, water masers
- Trigonometric methods absolute
- same as land surveys - use Pythagoras!
- Secondary Distance Indicators
- Generally relate a distance dependent quantity (luminosity or size) to a distance independent quantity that is correlated with it.
- e.g., Cepheid P-L relation: the period P is used as an indicator of the luminosity $L$


## - Absolute Methods

- make use of physics that is distance-independent
- e.g., the speed of light is constant, but light must traverse a different path for each image in a gravitational lens, so measuring the time delay between images constrains the distance through $c \Delta t$.


## Distance Scale

- Solar System
- earth-sun distance
- measure
- sun-venus angular separation $\theta$ at maximum elongation (45$47^{\circ}$; varies due to eccentricity)
- known with great accuracy via orbital periods
- earth-venus distance $d_{E V}$
- measure via radar reflection
- solve for earth-sun distance ( 1 AU )
- Historically, use period ratio
- Gauss's gravitational constant extremely well measured
- $k=\frac{2 \pi}{P(a M)^{1 / 2}}=0.01720209895 \mathrm{rad} / \mathrm{day}$
- in modern parsing,
- $G M_{\odot}=1.32712440018(9) \times 10^{20} \mathrm{~m}^{3} \mathrm{~s}^{-2}$

Experimental measurements of $G$ alone are considerably less accurate:

$$
G=6.67430(15) \times 10^{-11} \mathrm{~kg}^{-1} \mathrm{~m}^{3} \mathrm{~s}^{-2}
$$

## $1 \mathrm{AU}=149597870.7 \mathrm{~km}$ (IAU definition, 2012)



$$
\cos \theta=\frac{d_{E V}}{d_{S E}} \quad \sin \theta=\frac{d_{S V}}{d_{S E}}=\left(\frac{P_{V}}{P_{E}}\right)^{2 / 3}
$$

## Distance Scale

- Trigonometric Parallax
- use Earth's orbit as baseline
- measure angular shift in position of a star relative to background stars
$d_{*}=\frac{1}{\pi}$
d in pc for $\pi$ in arcseconds
( 1 pc is defined by a parallax angle of 1 ")

206,265 arcseconds in one radian, so 206,265 AU in one pc
$1 \mathrm{pc}=3.086 \times 10^{13} \mathrm{~km}$


$$
\pi \approx \tan \pi=\frac{b}{d_{*}}
$$

$$
b=d_{S E}=1 \mathrm{AU}
$$

## Distance Scale

- Statistical Parallax
- Stars move.
- Can determine mean baseline for a specified stellar type.
- Secular Parallax
- The Sun moves wrt the Local Standard of Rest
- Motion of the sun provides a baseline

- Moving Clusters
- convergent point method



## Distance Scale

## - Moving Clusters

- convergent point method

$1 \mathrm{AU} / \mathrm{yr}=4.74 \mathrm{~km} / \mathrm{s}$

$$
V_{\tau}=4.74 \frac{\mu}{\pi}
$$

$\mu$ is the proper motion (arcsec/yr) $\pi$ is the parallax (arseconds)
$V=\sqrt{V_{r}^{2}+V_{\tau}^{2}}$

$$
V_{r}=V \cos \theta
$$

$$
V_{\tau}=V \sin \theta=4.74 \frac{\mu}{\pi}
$$

$$
\frac{1}{d}=\pi=\frac{4.74 \mu}{V \tan \theta}
$$



Works on clusters of stars where it is possible to perceive their joint motion on the sky

## Distance Scale

- Secular Parallax
- The Sun moves wrt the Local Standard of Rest
- Motion of the sun provides a baseline

$$
d=\frac{V_{\odot}}{m}=\frac{4.16}{m}
$$



The diagram above shows two sets of stars, with two mean distances. The green stars show a small mean distance, while the red stars show a large mean distance. Because of the Solar motion ( $20 \mathrm{~km} / \mathrm{sec}$ relative to the average of nearby stars) there will be an average proper motion away from the point of the sky the Solar System is moving towards. This point is known as the apex. Let the angle to the apex be $\theta$. Then the proper motion $\mu=d \theta / d t$ will have a mean component proportional to $\sin \theta$, shown by the lines in the plot of $d \theta / d t$ vs $\sin \theta$. The slope of this line is m .

## Distance Scale

- Statistical Parallax
- Stars move.
- Can determine mean baseline for a specified stellar type.
- Assuming motion is random, so proper motion and radial motion are on average the same,

$$
d=\frac{\left\langle V_{r}\right\rangle}{\langle\mu\rangle}=\frac{\text { scatter in radial velocities }}{\text { scatter in proper motions }}
$$

## ESA's Gaia mission provides parallax distances for over 4 million stars within 1.5 kpc

## Distance Scale

$\rightarrow$ GAIA'S HERTZSPRUNG-RUSSELL DIAGRAM
aka HR diagram, color-magnitude diagram

## - Main Sequence Fitting

- absolute calibration by parallax
- apply to more distant clusters

distance modulus $m-M=5 \log (d)-5$


Temperature

## Distance Scale

## - Bright Star Standard Candles

- Cepheids, RR Lyraes
- calibrate by
- parallax
- main sequence fitting of clusters containing these stars

Luminosity of variable stars correlate with oscillation period
$L=4 \pi R^{2} \sigma T_{e}^{4} \quad$ use luminosity and effective surface temperature to infer radius

Baade-Wesselink method

$$
\int_{R_{1}}^{R_{2}} d R=-p \int_{t_{1}}^{t_{2}} V_{\operatorname{los}} d t
$$

## Distance Scale

## Cepheid P-L relation

## - Bright Star Standard Candles

- Cepheids, RR Lyraes
- calibrate by
- parallax
- main sequence fitting of clusters containing these stars



Period
Bright Cepheids have long periods; faint Cepheids have short periods.

Discover through repeated observation.
Measure period, infer luminosity from P-L relation. Apply inverse square law, accounting for extinction $A$ :

$$
m_{K}-M_{K}=5 \log (d)-5+A_{K}
$$

## calibration band-pass dependent

Pulsations of one Cepheid in many bands


Fig. 5-Variations of amplitude and phase of maximum seen in the light curve of a typical Galactic Cepheid as a function of increasing wavelength. Note the monotonic drop in amplitude, the progression toward more symmetric light variation, and the phase shift of maximum toward later phases, all with increasing wavelength. Upper light curves are for short wavelengths (ultraviolet, blue, and visual); lower light curves are for long wavelengths (red and near-infrared out to $K=2.2$ microns).

P-L relations in many bands


## Distance Scale

## - Bright Star Standard Candles

- Cepheids, RR Lyraes
- calibrate by
- parallax
- main sequence fitting of clusters containing these stars



Period

Bright RR Lyraes have long periods; faint RR Lyraes have short periods.

Discover through repeated observation.
Measure period, infer luminosity from P-L relation. Apply inverse square law, accounting for extinction $A$ :

$$
m_{K}-M_{K}=5 \log (d)-5+A_{K}
$$

