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Empirical Pillars of the Hot Big Bang

1. Hubble Expansion Hubble (1930)
2. Big Bang Nucleosynthesis (BBN)  Alpher [Bethe], & Gamow (1948)  afiy paper
3. Cosmic Microwave Background (CMB) Penzias & Wilson; Peebles & Dicke (1965)
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Big Bang Nucleosynthesis occurs during the radiation dominated era
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Solve nuclear reaction chain as the universe expands and cools.

Must also keep track of neutron decay!

1/2
a(t) <tV
t(s)

101 100 101 102 103 104 10° 106

] T T T

D b.n.
100 H L =
N Iy
10-2F SBBN freeze -out -
V >
decoupling
104 n/p D/H &
decoupling

3He/H F)

106 N g7
e

1081~ annihilation i

e e e ‘Be/H_ _ _
10-10 “‘-
1012 7

S5Li/H
10-14 m
g R 15
103 101 100

I(a) ; p,(a); pla)

7y = 10.2 minutes




BBN gets the abundances of
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Helium NGC 628

Helium is measured in the HiII
regions of nearby galaxies.

Pink spots are HII regions - interstellar
gas ionized by the UV light of hot stars




Helium

Helium is measured in the HiII
regions of nearby galaxies.

UGC 12695

Spectrum of HII
region S1(2)
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Helium 03
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Y, = 0.25 + 0.01

with lots of debate over the 3rd place of decimals!



Helium

Helium is a poor baryometer because
it varies little with the baryon density.

However, it is a strong corroboration
of BBN that the abundance is that
required.

Observationally, it is challenging to
measure helium lines with great
accuracy, and interpret their
abundance as the percent level. It is
also challenging to differentiate
between primordial helium and
stellar helium production

abundance of light nuclei
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Deuterium

D/H in absorption along the line of sight to high redshift QSOs
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Deuterium

D/H in absorption along the line of sight to high redshift QSOs

Deuterium is a good baryometer
because D/H varies sensitively
with the baryon density.

In addition, we also expect the gas
observed in absorption at high
redshift to be minimally affected
by stellar nucleosynthesis
subsequent to BBN.

Observationally, it is challenging
to estimate the continuum level
against which the absorption
happens, and to compare a very
weak deuterium line to a very
strong hydrogen line.
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Lithium
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Lithium
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Lithium is a challenging as a
baryometer because the variation
of Li/H with the baryon density is
double-valued thanks to the
competition between lithium and
beryllium.
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abundances of
deuterium, helium,
and lithium right if
the mass density 1s
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critical density.

There 1s some
tension 1n that
lithium prefers a
somewhat lower
baryon density, but
the basic picture 1s
sound.



BBN is one of the most robust elements of the hot big bang,
as each isotope provides independent corroboration.
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Consequently, the baryon density is well-known,
but far short of the critical density.

~ 100

BBN gets the abundances of
deuterium, helium, and
lithium right if the mass
density 1s about 4% of the
critical density.

w, = Q,h* = 0.022
from deuterium
W), = Qbhz = 0.019

from deuterium prior
to CMB constraints

w, = Q,h* = 0.017

from lithium

H
Y 50 @,=0.02 and H,=70

means €2, = 0.04



Walker et al. (1991) o T8 0 0% . BBNalready old news in 1991

PRIMORDIAL NUCLEOSYNTHESIS REDUX
TerRRY P. WALKER,"'? GARY STEIGMAN,?>'? DAvVID N. ScHRAMM,* KEITH A. OLIVE,®* AND HO-SHIK KANG?

H Received 1990 December 17 accepted 1991 January 17
Q.h2 =005+001 h. — 0 ABSTRACT
b 50 o e o 5 O - The latest nuclear reaction cross sections (including the most recent determinations of the neutron lifetime)
50 are used to recalculate the abundances of deuterium, *He, *He, and "Li within the framework of primordial

nucleosynthesis in the standard (homogeneous and isotropic) hot, big bang model. The observational data
leading to estimates of (or bounds to) the primordial abundances of the light elements is reviewed with an
emphasis on "Li and *He. A comparison between theory and observation reveals the consistency of the pre-
dictions of the standard model and leads to bounds to the nucleon-to-photon ratio, 2.8 < n,, < 4.0 (1,0 =
10"%ng/n ), which constrains the baryon density parameter, Q,h?, = 0.05 + 001 (the Hubble parameter is
Hy, = SO}/:,O km s~ ' Mpc™'). These bounds imply that the bulk of the baryons in the universe are dark if
Qror = 1 and would require that the universe be dominated by nonbaryonic matter. An upper bound to the

SO primordial mass fraction of “He, Y, < 0.240, constrains the number of light (equivalent) neutrinos to N, < 3.3,
in excellent agreement with the LEP and SLC collider results. Alternatively, for N, = 3, we bound the predict-
ed primordial abundance of *He: 0.236 < Y, < 0.243 (for 882 < 1, < 896 s).

Subject headings: abundances — early universe — clementary particles — nucleosynthesis

w, = 0.0125 + 0.0025 h

1 OO No. 1, 1991 PRIMORDIAL NUCLEOSYNTHESIS REDUX 65
2 o y Bl
QT 26 -1, =889+7 sec (E‘-“);l
0015 015 15 15 E N, =30 :
: tn =1889[s;c1'7rvr‘r | ;l llrl T T T 177 Ir: .25&_

was canonical for many years. Now . i

a)b — 0.0224 i 0.000l (Planck 2018) m-wl?l J Lu,mll; "’llo? ""*“\{3,4

n

Fi1G. 12— Predicted abundances (by number) of D, D + *He, and "Li, and
the *He mass fraction as a function of n for N, = 3 and 7, = 889 s for 0.1 <
Mo < 100. The vertical band delimits the range of n consistent with the obser-
vations.

10710

Since N, = 3 (assuming m,, < a few MeV; the inequality is

l . h . 1 / because BBN is sensitive to particles which could be unde- o
ta K€ €rror bal’S Wlt a gl’aln ol Sd t. tected at SLC and LEP) and 1, = 882, we see from equation (4) " )
that FiG. 13.—Predicted abundances (by number) of D, *He, D + “He, and "Li,
and the *He mass fraction as a function of n for N, = 3 and 882 < 7, < 896 s,
The 95% CL bounds on the abundances (sce text) are shown. The vertical band
YP 2 0227 + 0.0101nn,, , (30) delimits the range of y consistent with the observations.

so that, for ¥, < 0.240, we find 7,, < 4. If, however, we choose
for the observational upper bound to the primordial helium

a-buqdan_ce Y, < 0.245 (9.2_35). this bound on the nucleon where T 1s 1in kelvins Comparine the bharvon mace dencity
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CMB 2015 (Planck)
BBN 1999 (pre-CMB D/H)

BBN 1991 (Walker et al.)

missing

missing

O, h? = 0.0125 + 0.0025 0, h? = 0.019 £+ 0.001 0, h? = 0.02230 + 0.00023

There has been more growth in the baryon density than anticipated by the uncertainties, but the basic picture 1s sound.
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Despite tensions between independent measurements of different 1sotopes, the baryon density 1s much less than critical.



Friedmann equation can be written

2
a Y{ €} E, kcz 02 g
a) T3 Pt > T34 =
a 3 C (CZR()) 3
where
split density into 9 3G v diation denit O — S1(; £, B r(G an
mass and radiation p mass density; radiation density —

" 3H2 "T3H2 2 3H2 (2

kc?
Q, = — 2
(CZROH ) Can play this trick with any substance you want to make up.
curvature and cosmological E.g., we can distinguish between baryons and dark matter,
constant terms as before 5 both of which contribute to Qn, here because they share the
C A same equation of state (w=0). Different equations of state
Q A — lead to different redshift dependences.

3H?

the sum of density parameters must be unity: Qm + Qr + Q2 A + ) A — 1



2
a 871G £, ke c? .
a) T3 Pt > T34 =
a 3 C (aRy) 3
where
split density into Q SﬂG densitv- radiation densi . 8” G 81” 87[ G Cle
mass and radiation P mass density; radiation density Q —

" 3H2 "TO3H2 2 3H2 (2

Want to make this distinction because mass evolves as (1l+z)3 and radiation as (1l+z)4.

Now the Friedmann equation becomes

2
H Q QO Q
— | =—+—+—+Q, — =14z
H, a’ a* a? a



Expansion dvnami

Using —:1—|—Z H=—

Friedmann equation can be written

2

Hy 3 4 )
o =Q (1+2°+Q(1+2)"+Q (1 +2)°+ Q)
0

Where these are the Q, at the current time, but I've left off the 0 because there are enough subscripts already.

Peebles’s book calls this [, 2( Z) as this expansion term appears in many contexts.

In general, this must be solved numerically - see the cosmology calculators linked from the course web page.
Sometimes it is possible to obtain an analytic solution if one term or another can be ignored.
E.g., the universe is either matter or radiation dominated except very near the epoch of equality, so one
term or the other can usually be neglected. If there is no cosmological constant, the curvature can be
replaced by Qx=1-Qy ; similarly for the Lambda term if the geometry is flat.



Solutions from Felten & Isaacman (1986) Reviews of Modern Physics, 58, 689

No cosmological constant
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FIG. 3. “Standard” Friedmann models. The family of scale
factors R (7) for the “standard models” (A =0). The free pa-

rameter, shown on the curves, is {};. As shown by the 7 inter-
cepts, all models have ages <1 (<H; ' yr).

Flat geometry 0.3
[ T [ T 1B 0 | | T |
— "INFLATIONARY ” 110.6 /4 m
 MODELS i _
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06 1
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FIG. 2. “Inflationary” Friedmann models. The family of scale
factors R (7) for models satisfying the “inflationary constraint”
(three-space curvature K,=0). The free parameter, shown on

the curves, is ). The cosmological constant A is determined
from ), by Eq. (14).



Solutions from Felten & Isaacman (1986) Reviews of Modern Physics, 58, 689

Can in principle have solutions in which
there was no Big Bang in the past,
depending on the value of Lambda.

N

SCALE FACTOR R (1)

COSMIC TIME t (UNITS Hg™")

FIG. 1. Solutioms of the Friedmann equation. Three families
of scale factors R (7) for Friedmann (zero-pressure) universes,
with three fixed values of the present density parameter Q,: (a)
Q=0.1; (b) Qp=1; (c) Qp=3. The free parameter, shown on
the curves, is the cosmological constant A in units of Hj, where
H 1s the present Hubble parameter. The time 7 is measured in
units of the Hubble time H; ' and is taken =0 at present. The
scale factor R (7) is normalized to unity at present: Ro=1. For
further discussion see the text.



