Cosmology and Large Scale Structure

16 September 2020

http://astroweb.case.edu/ssm/astr328/

Expansion dynamics

The Acceleration equation with the cosmological constant:

The Pressure P is zero when matter dominates. It is simply related to the energy density when radiation dominates.

$$a = (1+z)^{-1}$$

can usually be replaced with a single variable, as $P = w\rho$ for a single medium.

You can see why the cosmological constant leads to acceleration!

 $\ddot{a} \sim \Lambda$

Friedmann equation

$$H^2 = H^2(\Omega_m + \Omega_r + \Omega_k)$$

Looks trivial, but H and Ω evolve. So really

$$\left(\frac{H}{H_0}\right)^2 = \Omega_{m_0}(1+z)^3 + \Omega_{r_0}(1+z)^4 + \Omega_{k_0}(1+z)^2 + \Omega_{\Lambda_0}(1+z)^2 + \Omega_{$$

In general, must solve numerically. But often we can ignore irrelevant terms -

> Only one matters unless close to the redshift of matter-radiation equality z_{eq} .

matter

So often only two terms matter. In the early universe, only one, as the mass-energy dominates.

Expansion dynamics

Friedmann equation

tion

$$H = \frac{\dot{a}}{a}$$

$$H^{2} = H^{2}(\Omega_{m} + \Omega_{r} + \Omega_{k} + \Omega_{\Lambda})$$

$$a = (1 + z)^{-1}$$

$$\Omega_{m} + \Omega_{r} + \Omega_{k} + \Omega_{\Lambda} = 1$$

Simplifies to

$$\left(\frac{H}{H_0}\right)^2 = \Omega_{m_0}(1+z)^3 + \Omega_{k_0}(1+z)^2$$

Or just

$$\left(\frac{H}{H_0}\right)^2 = \Omega_{r_0}(1+z)^4$$

It is useful to consider the limit for domination by each case (matter, radiation, curvature, cosmological constant)

Expansion dynamics

for a universe without a cosmological constant in the matter dominated era.

for the early, radiation dominated universe.

comoving coordinates constant

Robertson-Walker metric

$$ds^{2} = -c^{2}dt^{2} + a^{2}(t)[dr^{2} + S_{k}^{2}(r)d\Omega^{2}]$$

for photons, ds = 0 so this becomes

cdt = a(t)dr

Once we know (or assume) what kind of universe we live in, we specify the expansion history a(t).

we know the expansion factor from the redshift

$$\frac{a(t_0)}{a(t_e)} = 1 + z$$

<u>comoving coordinates constant</u>

Once we know (or assume) what kind of universe we live in, we specify the expansion history a(t).

we know the expansion factor from the redshift

$$\frac{a(t_0)}{a(t_e)} = 1 + z$$

a photon propagating through the expanding universe traverses a distance element

$$d\ell = cdt = a(t)dr$$

The comoving separation between two points is fixed, so

$$r = \int_0^r dr = c \int_{t_e}^{t_0} \frac{dt}{a(t)}$$

Relates observed redshift to the time of photon emission (400 Myr ago in the example at right).

comoving coordinates constant

Once we know (or assume) what kind of universe we live in, we specify the expansion history *a*(*t*).

we know the expansion factor from the redshift

a photon propagating through the expanding universe traverses a distance element

$$d\ell = cdt = a(t)dr$$

The comoving separation between two points is fixed, so

$$r = c \int_{t_1}^{t_2} \frac{dt}{a(t)} = c \int_{t_2}^{t_3} \frac{dt}{a(t)}$$

$$\frac{a(t_2)}{a(t_1)} = 1 + z_{1 \to 2} \qquad \qquad \frac{a(t_3)}{a(t_2)} = 1 + z_{2 \to 3}$$

relates the redshift to the expansion factor

