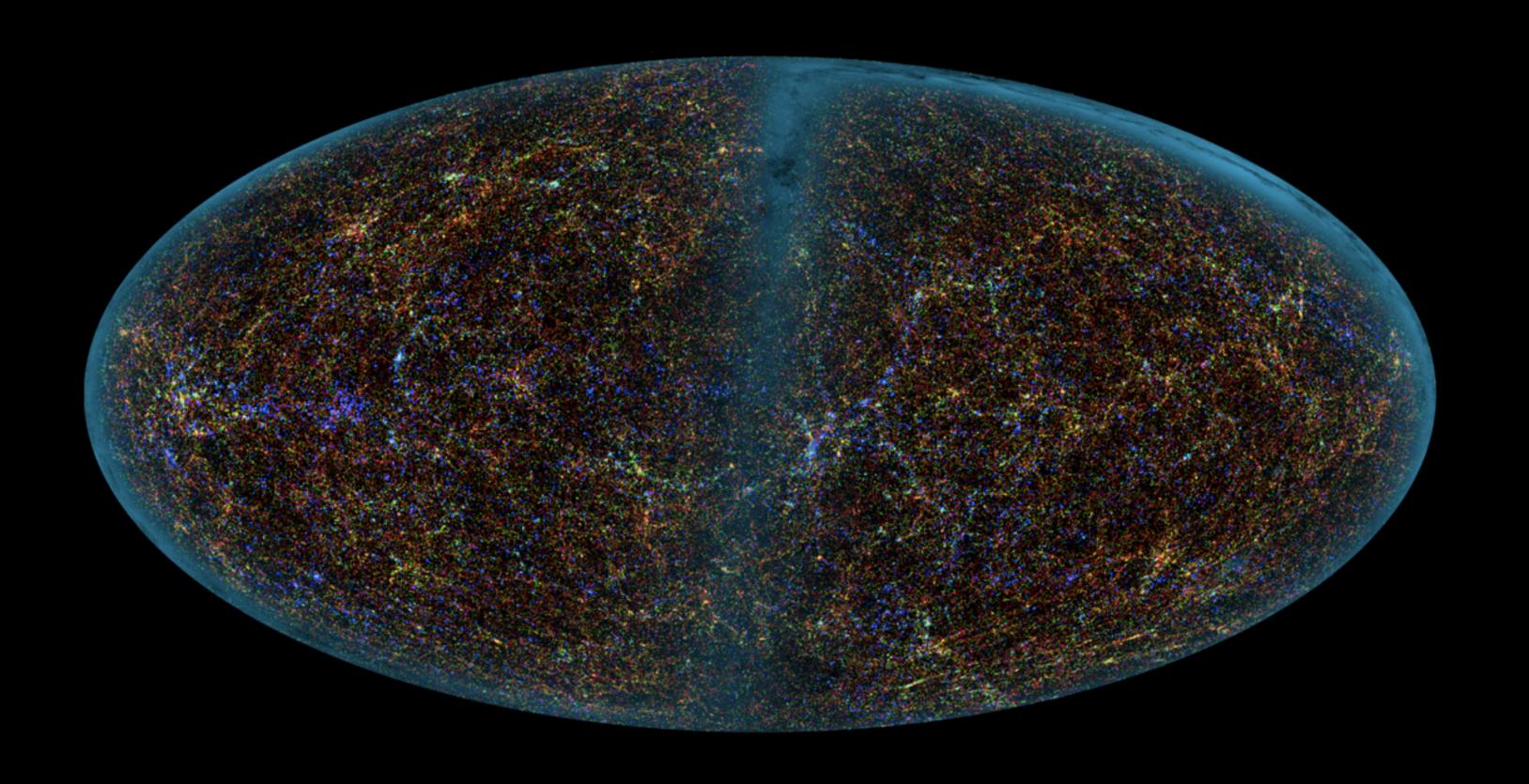
Cosmology and Large Scale Structure



Today
Distance Scale III
Tully-Fisher
Absolute methods
Ho tension

next homework posted

- Solar System
 - earth-sun distance
- Trigonometric Parallax
 - statistical & secular parallax; moving clusters
- Main Sequence Fitting
- Bright Star Standard Candles
 - Cepheids, RR Lyraes, TRGB
- Secondary Distance Indicators
 - Type Ia SN, Tully-Fisher, Fundamental Plane, SB Fluctuations
- Absolute Methods
 - Gravitational lens time delay, SZ effect, water masers

Distance Scale Ladder



distance modulus $m - M = 5 \log(d) - 5$

- Secondary Distance Indicators
 - Tully-Fisher relation
 - luminosity-linewidth relation
 - Baryonic Tully-Fisher relation
 - baryonic mass-flat rotation speed relation

Faber-Jackson relation first noticed as a scaling relation between luminosity and line width in Spiral galaxies. Slope band-dependent.

The line width is a crude estimator of the rotation speed. It provides an estimator of the luminosity which in turn acts as a standard candle to give the distance.

"The result for the Virgo cluster suggests a Hubble constant of 80 km per sec per Mpc" - Tully & Fisher (1977)

Tully & Fisher (1977)

R. B. Tully and J. R. Fisher: Distances to Galaxies

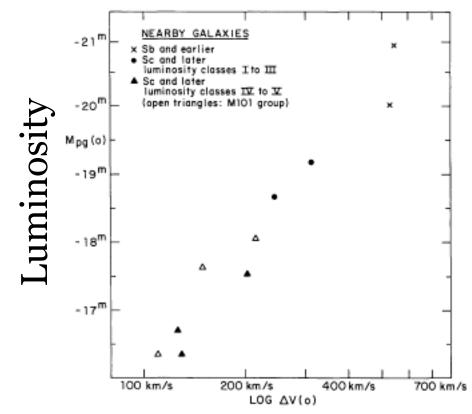
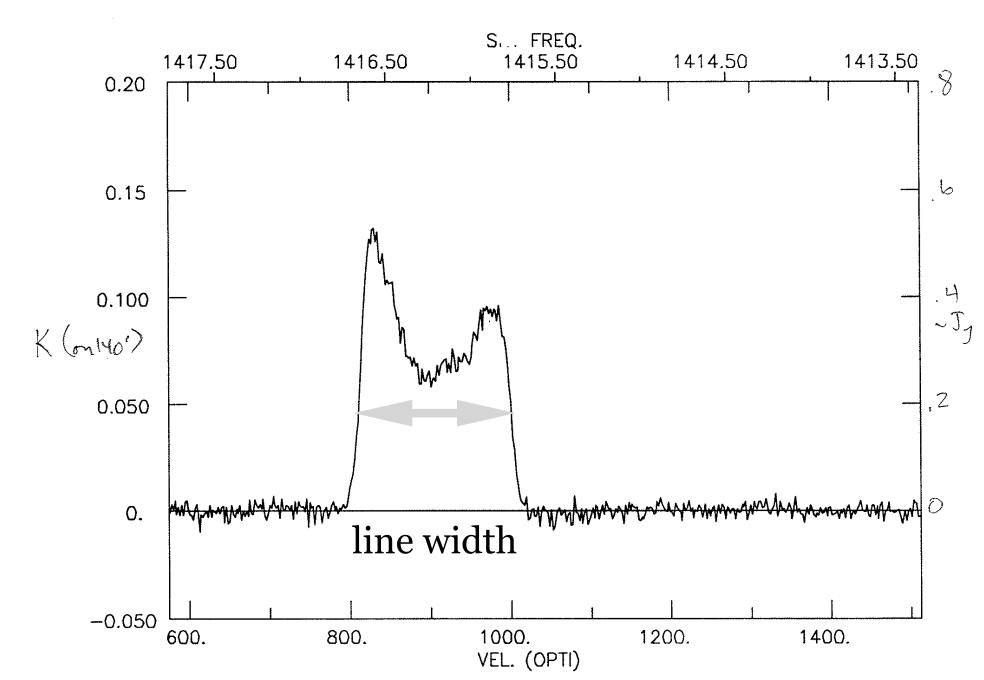


Fig. 1. Absolute magnitude – global profile width relation for nearby galaxies with previously well-determined distances. Crosses are M31 and M81, dots are M33 and NGC 2403, filled triangles are smaller systems in the M81 group and open triangles are smaller systems in the M101 group.

line width

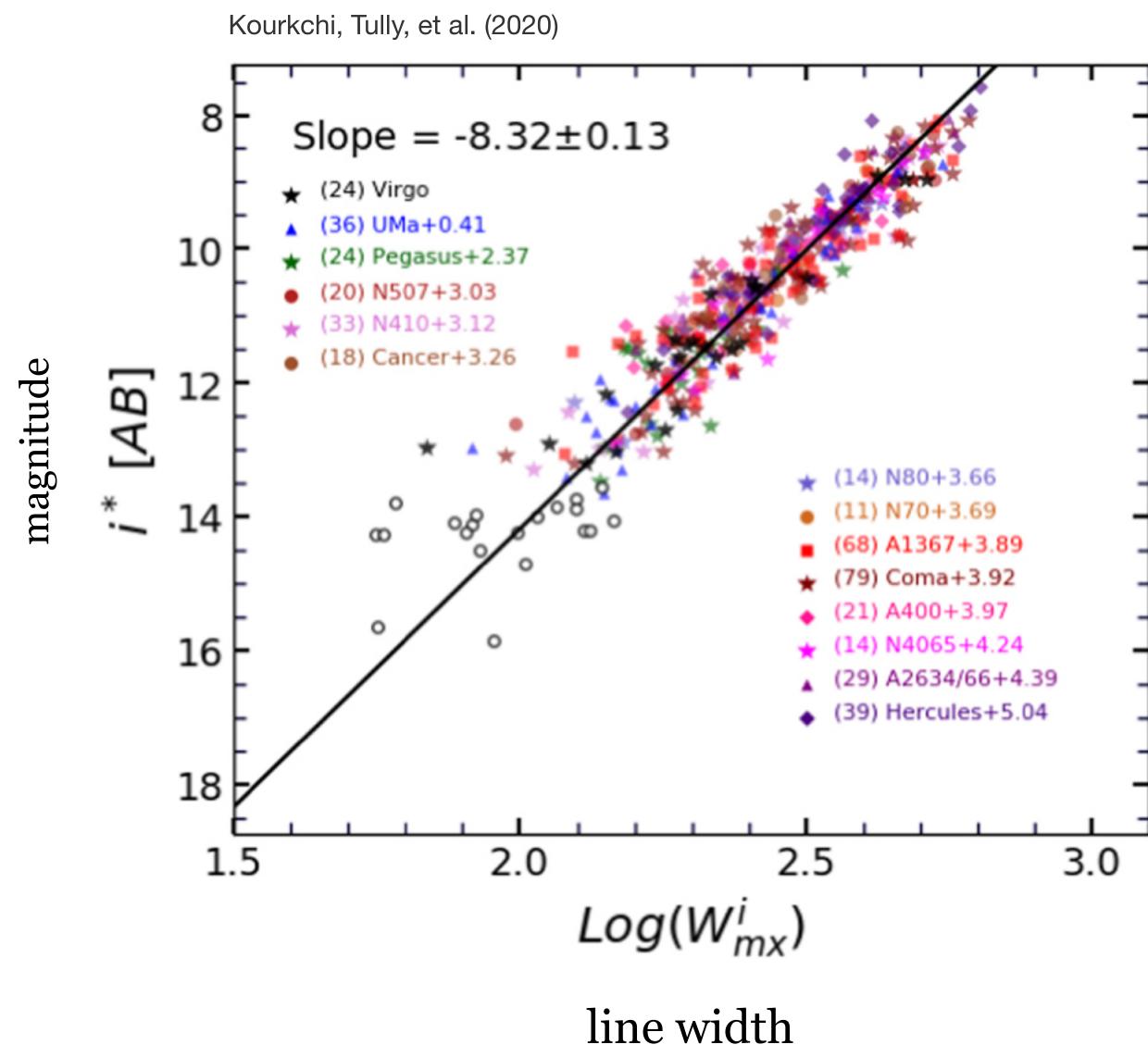


Tully-Fisher relations

amplitude of line width correlates with luminosity

- Secondary Distance Indicators
 - Tully-Fisher relation
 - luminosity-linewidth relation
 - Baryonic Tully-Fisher relation
 - baryonic mass-flat rotation speed relation

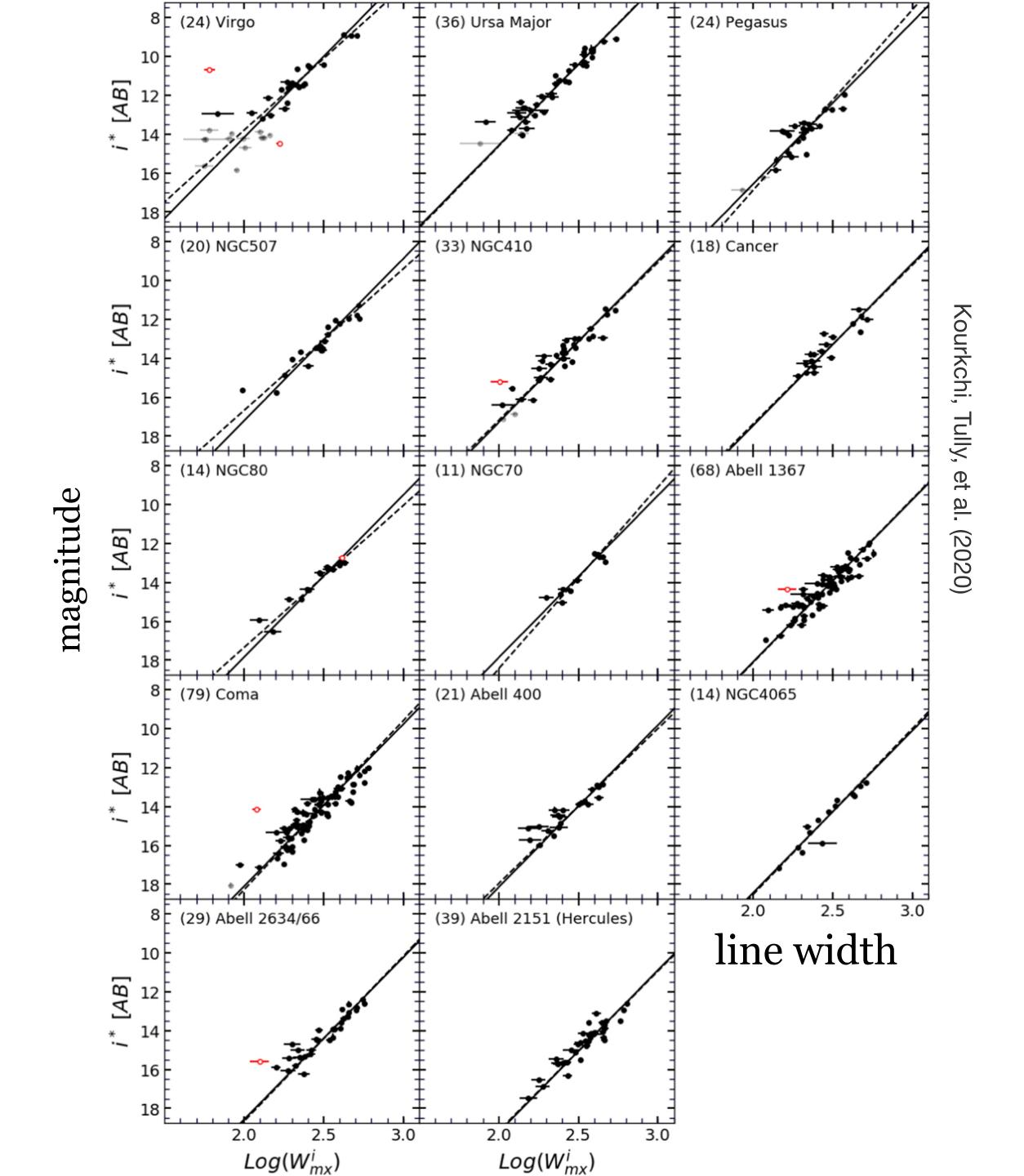
Calibrate TF with galaxies whose distance is known by other means...



Tully-Fisher relations amplitude of line width correlates with luminosity

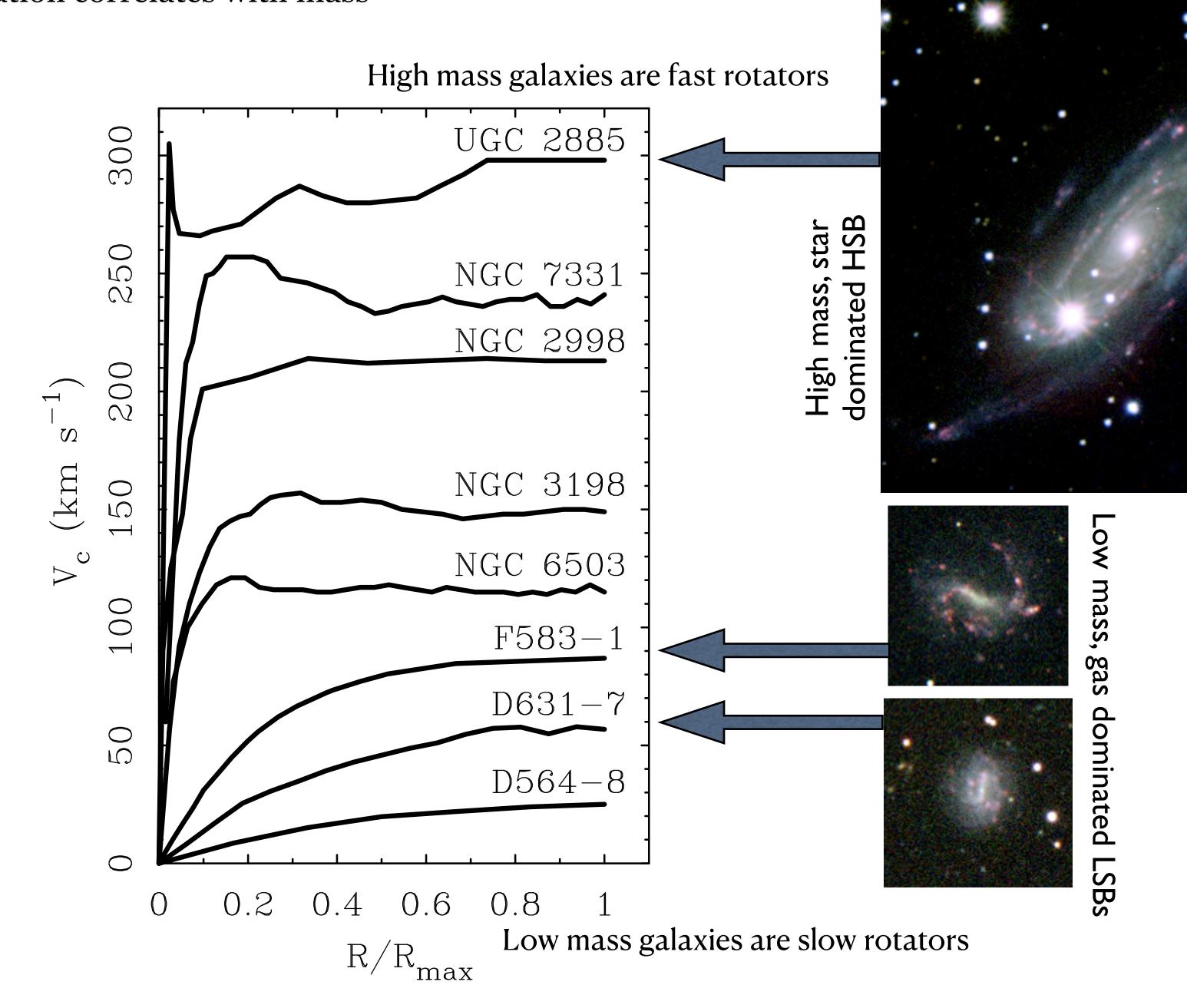
- Secondary Distance Indicators
 - Tully-Fisher relation
 - luminosity-linewidth relation
 - Baryonic Tully-Fisher relation
 - baryonic mass-flat rotation speed relation

... then apply to more distance galaxies. At right, many clusters are shown. One thus gets a distance to every cluster to use to determine H_0 .

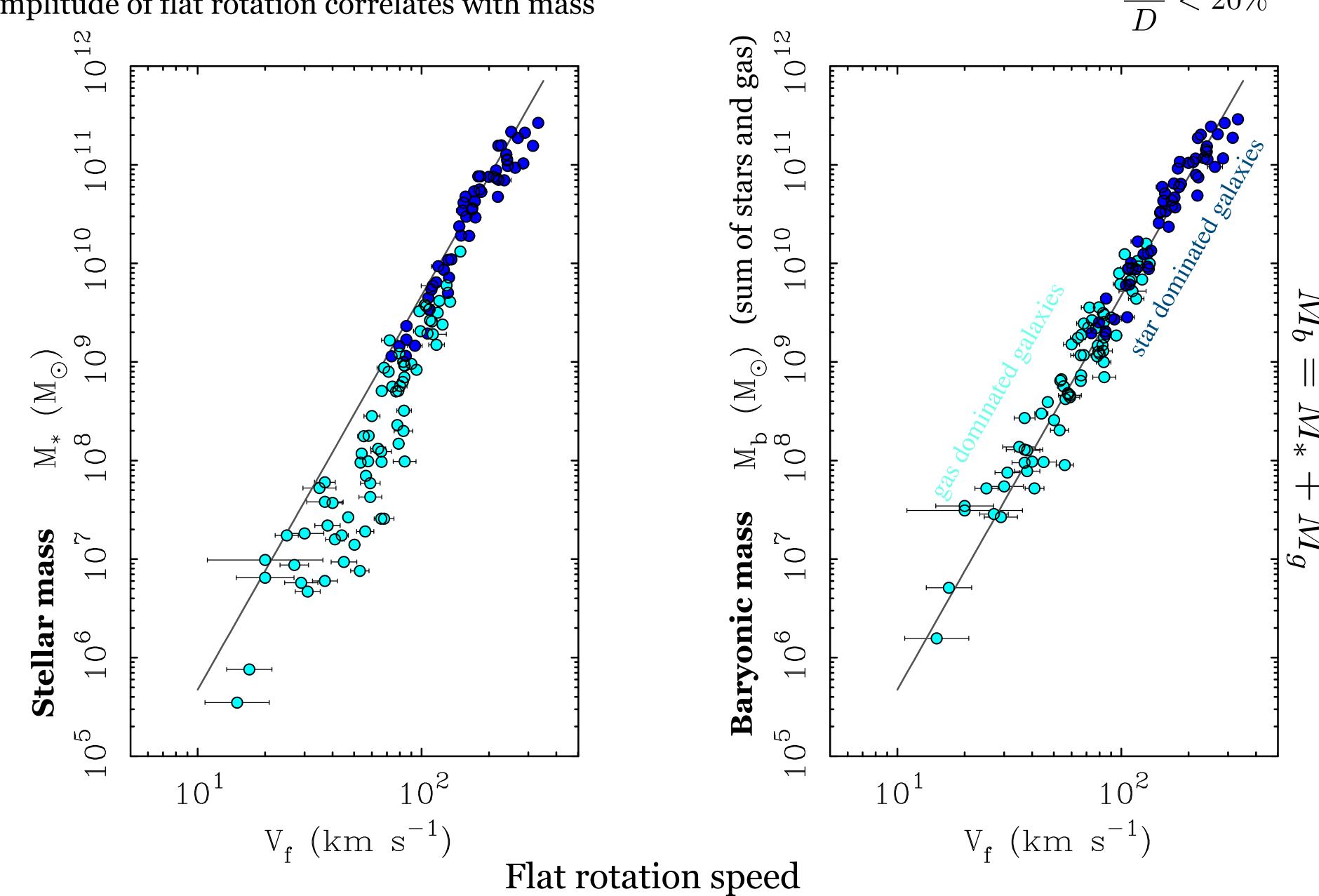


Tully-Fisher relations
amplitude of flat rotation correlates with mass

- Secondary Distance Indicators
 - Tully-Fisher relation
 - luminosity-linewidth relation
 - Baryonic Tully-Fisher relation
 - baryonic mass-flat rotation speed relation



Tully-Fisher relations amplitude of flat rotation correlates with mass



Rotating galaxies

Fundamentally, Tully-Fisher is a relation between **baryonic mass** (stars+gas) and the amplitude of the **flat rotation speed.**

This is the **Baryonic Tully-Fisher Relation**

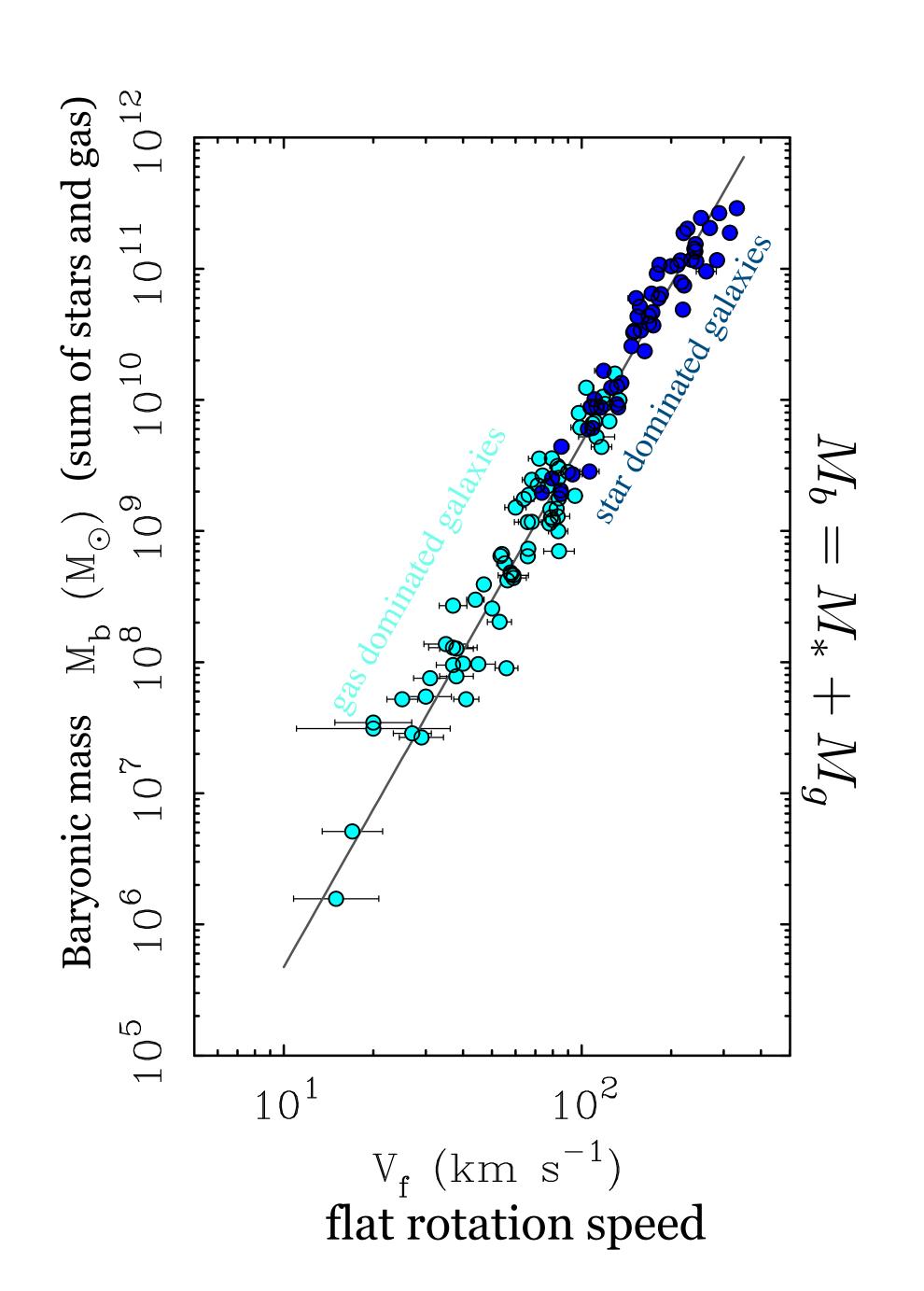
$$M_b = AV_f^4$$

$$A = 48.5 \pm 3.3 \text{ M}_{\odot} (\text{km s}^{-1})^{-4}$$

with remarkably little intrinsic scatter

$$\sigma$$
 < 0.11 dex

This is about how much scatter we expect from stellar population mass-to-light variations, leaving very little room for other sources of scatter.



Example application:

Calibrate BTFR with 50 galaxies having distances that are known via either Cepheids of Tip of the Red Giant Branch measurements.

Applied to ~100 galaxies with high quality rotation curves, this provides a local measurement of the Hubble constant:

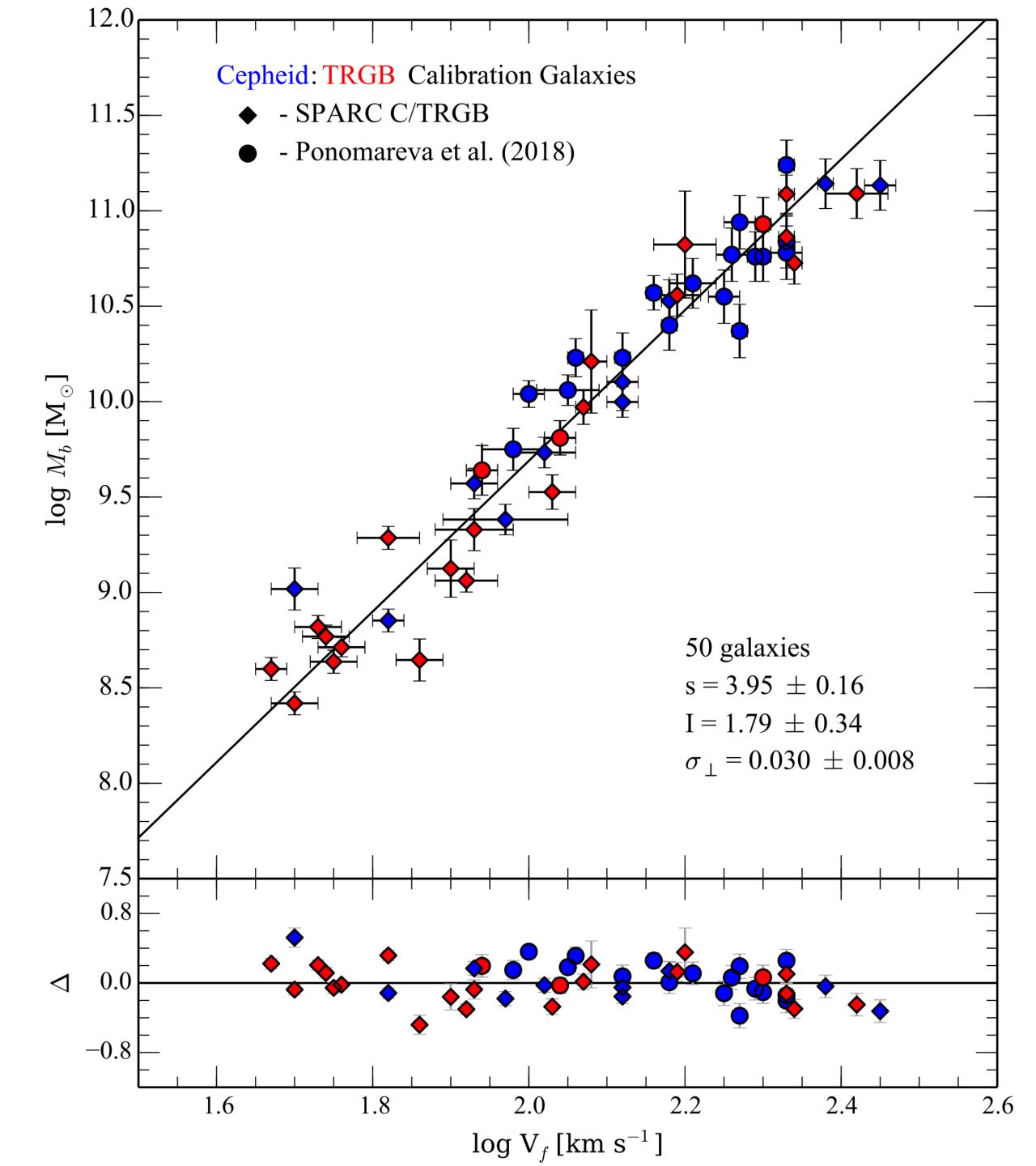
$$H_0 = 75.1 \pm 2.3 \text{ (stat)} \pm 1.5 \text{ (sys)} \text{ km s}^{-1} \text{Mpc}^{-1}$$

Schombert, McGaugh, & Lelli 2020, AJ, 160, 71

This is consistent with the application of the traditional luminosity-line width Tully-Fisher relation to a much larger sample of ~10,000 galaxies.

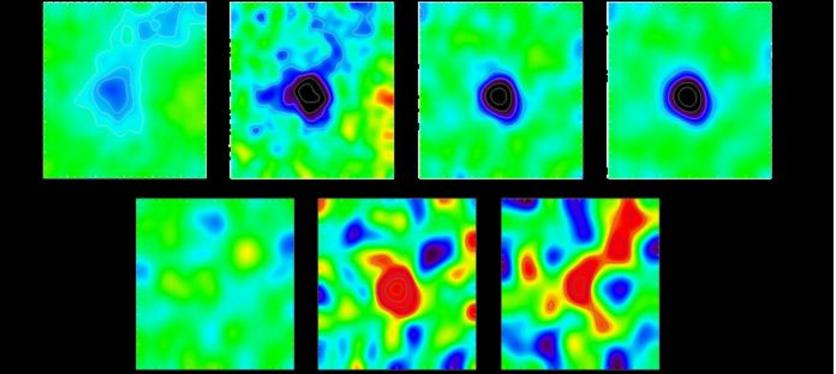
$$H_0 = 75.1 \pm 0.2 \text{ (stat)} \pm 3 \text{ (sys) km s}^{-1} \text{Mpc}^{-1}$$

Kourkchi, Tully, et al. 2020, arXiv:2009.00733

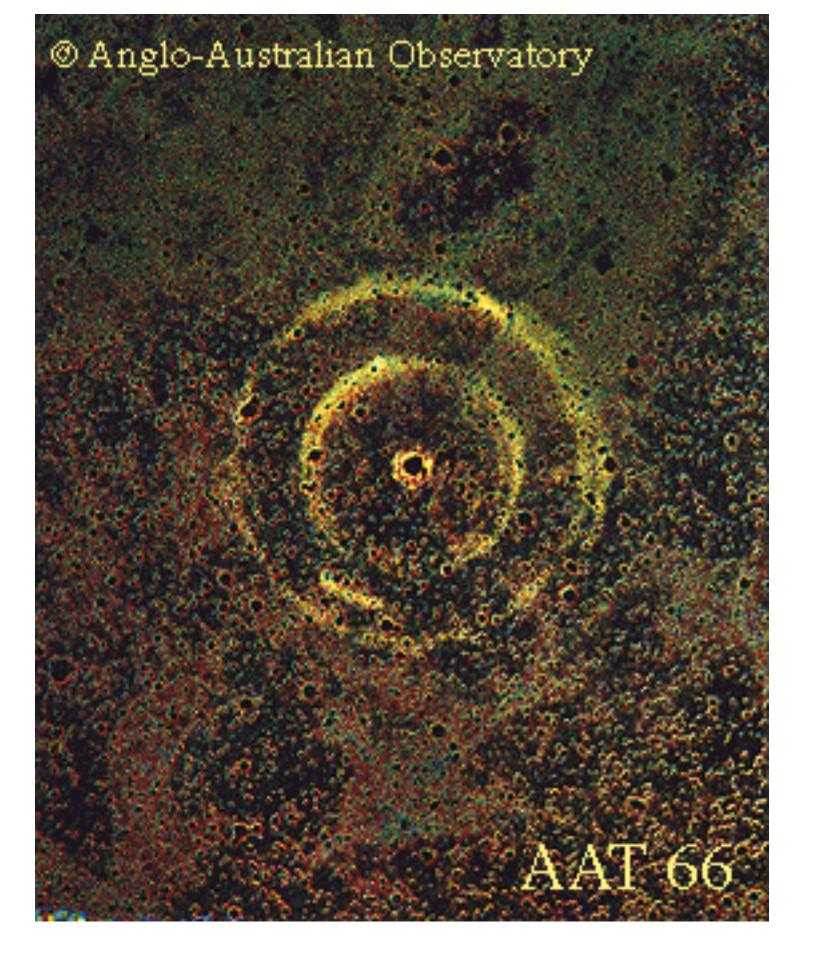


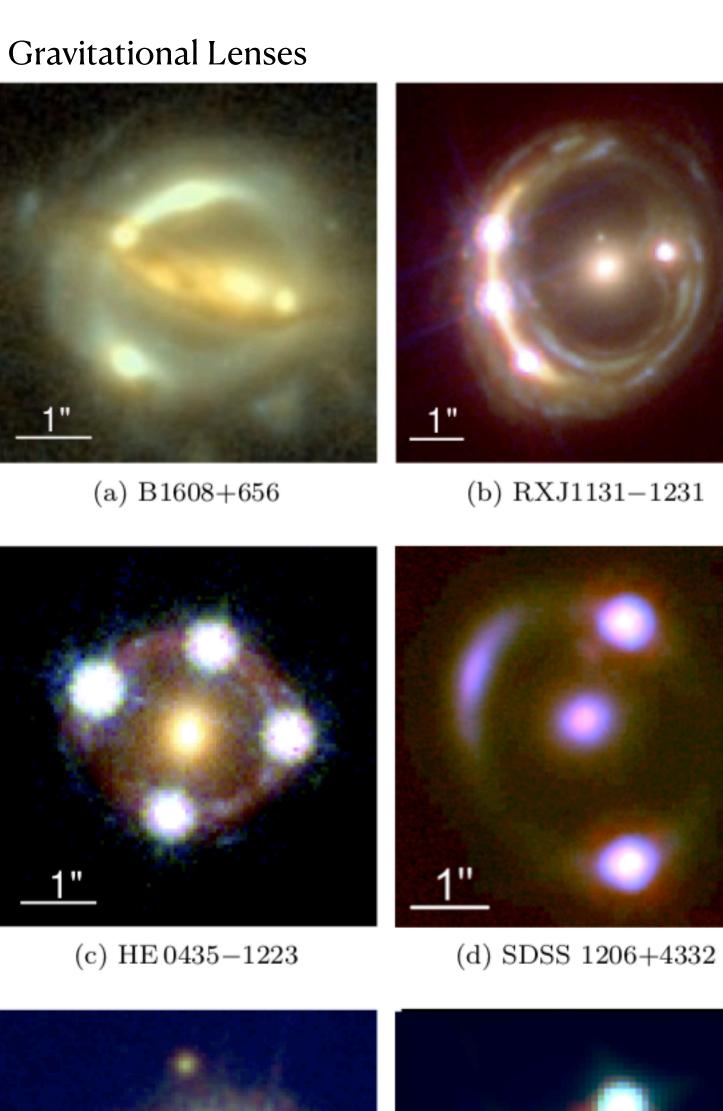
- Absolute Methods
 - Light echo
 - Gravitational lens time delay
 - Sunyaev-Zeldovich (SZ) effect
 - water masers

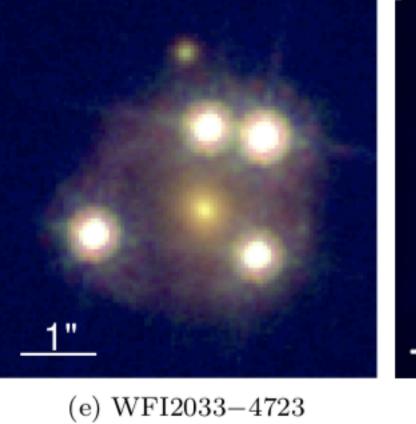
S-Z effect

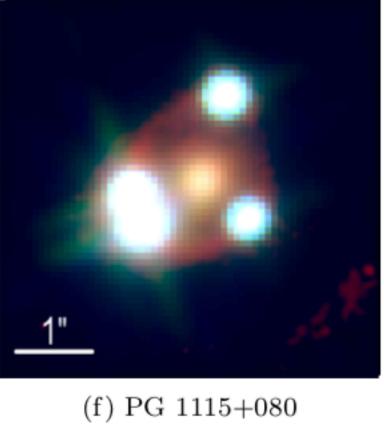


Light echos







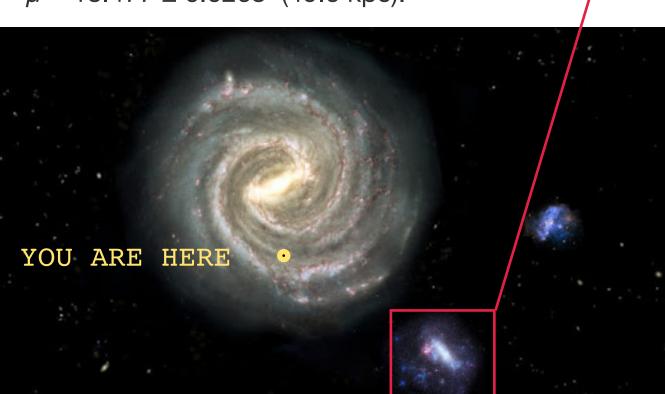


- Absolute Methods
 - Light echo
 - combines geometry & speed of light

Supernova 1987A occurred in the Large Magellanic Cloud, a satellite galaxy of the Milky Way.

The LMC is an important step in the distance ladder. The mean of over 200 measurements gives $m - M = 18.49 \pm 0.13$ (49.9 kpc; Crandall & Ratra 2015).

Pietrzyński et al. (2019) model depth variations; find a mean LMC distance of $\mu = 18.477 \pm 0.0263$ (49.6 kpc).



Absolute Methods

- Light echo
 - combines geometry & speed of light

Flash of supernova seen directly, then seen reflected by encircling ring of dust with a time delay that depends on size, distance, and the speed of light.

time delays:

$$\Delta t_B = \frac{R_{\rm ring}}{c} (1 - \sin i)$$

$$\Delta t_B = \frac{R_{\text{ring}}}{c} (1 - \sin i) \qquad \Delta t_C = \frac{R_{\text{ring}}}{c} (1 + \sin i)$$

measured time delays:

$$\Delta t_B = 90 \text{ days}$$

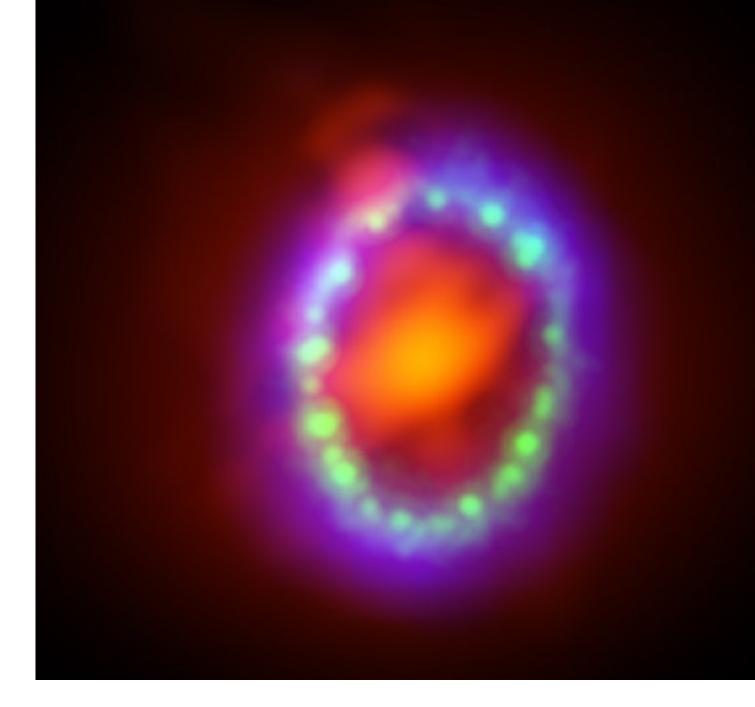
$$\Delta t_C = 400 \text{ days}$$

Two equations with two unknowns:

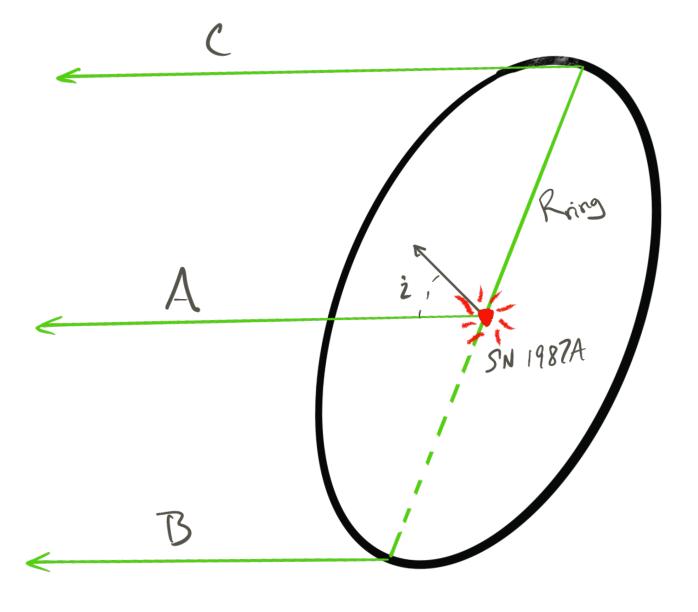
$$R_{\rm ring} = 0.42 \pm 0.03 \text{ pc}$$
 $i = 43^{\circ}$

Angular size of major axis $\theta_{\rm ring} = 1.66''$

$$\theta_{\text{ring}} = \frac{R_{\text{ring}}}{d_{\text{LMC}}} \rightarrow d_{\text{LMC}} = 51.9 \pm 3.1 \text{ kpc}$$
 (Crotts et al. 1995)



Ring around SN 1987A



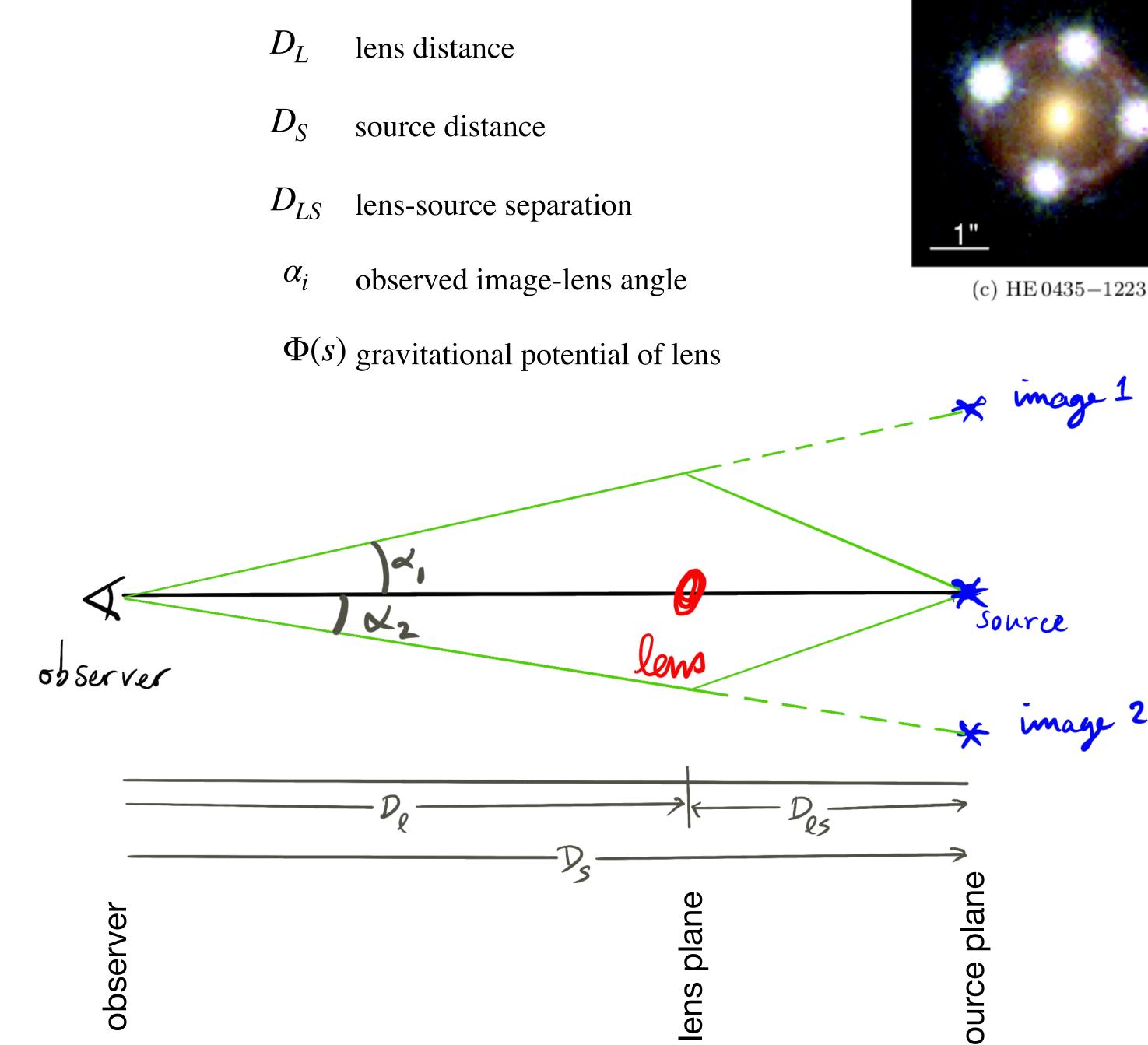
- Absolute Methods
 - Gravitational lens time delay

There is a delay between the arrival times of the multiple images that occur in gravitational lenses:

$$\Delta t_i = (1 + z_i) \left(\frac{1}{2c} \frac{D_L D_S}{D_{LS}} \alpha_i^2 - \frac{2}{c^3} \int \Phi(s) ds \right)$$

The time delay is tricky to measure, but in principle this gives a direct geometrical estimate of the distance: it's like parallax to cosmic distances, bypassing all the rungs in the distance ladder.

Can use distance-redshift relation to replace $D_L(z_L)$ and $D_S(z_S)$ with H_0 and q_0 .



- Absolute Methods
 - Gravitational lens time delay

There is a delay between the arrival times of the multiple images that occur in gravitational lenses:

$$\Delta t_i = (1 + z_i) \left(\frac{1}{2c} \frac{D_L D_S}{D_{LS}} \alpha_i^2 - \frac{2}{c^3} \int \Phi(s) ds \right)$$

The time delay is tricky to measure, but in principle this gives a direct geometrical estimate of the distance: it's like parallax to cosmic distances, bypassing all the rungs in the distance ladder.

Can use distance-redshift relation to replace $D_L(z_L)$ and $D_S(z_S)$ with H_0 and q_0 .

 $H_0 \in [0, 150] \quad \Omega_{\rm m} \in [0.05, 0.5]$ $H_0:71.0^{+2.9}_{-3.3}$ B1608 (Suyu+2010, Jee+2019) RXJ1131 (Suyu+2014, Chen+2019) robability density HE0435 (Wong+2017, Chen+2019) J1206 (Birrer+2019) $H_0:68.9_{-5.1}^{+5.4}$ WFI2033 (Rusu+2019) PG1115 (Chen+2019) $H_0:71.6^{+3.8}_{-4.9}$ $H_0:81.1^{+8.0}_{-7.1}$ $H_0:73.3^{+1.7}_{-1.8}$ 60 50 80 90

$$H_0 = 73.3^{+1.7}_{-1.8} \,\mathrm{km}\,\mathrm{s}^{-1}\,\mathrm{Mpc}^{-1}$$

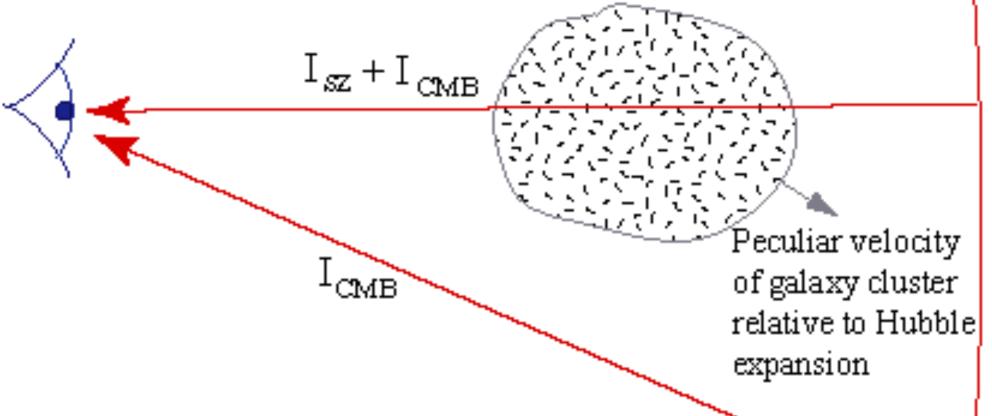
Wong et al. 2019, arXiv:1907.04869

- Absolute Methods
 - Sunyaev-Zeldovich (SZ) effect

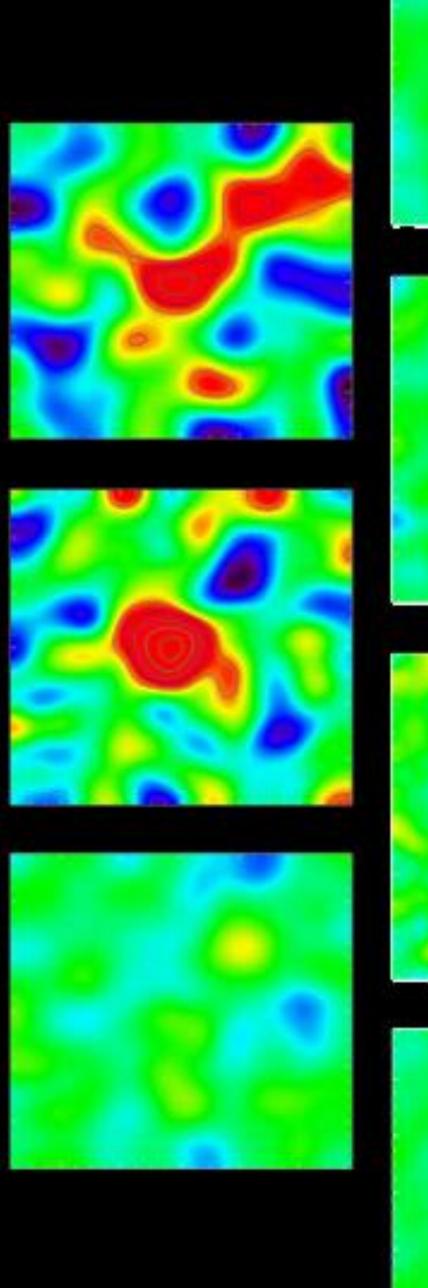
Clusters of galaxies contain galaxies, hot gas and dark matter. The gas temperature of a rich cluster is typically 5-15 keV

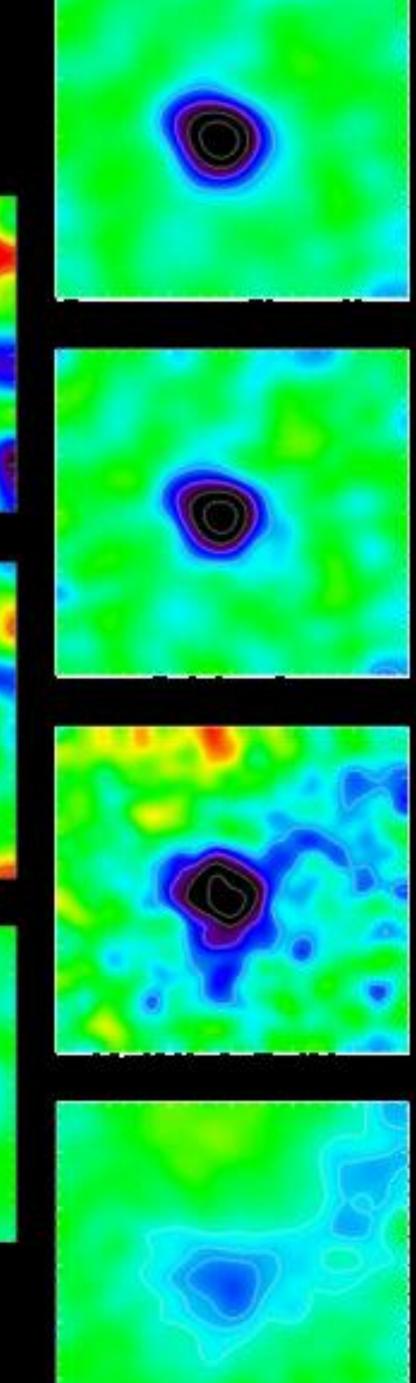
Redshift

z=1100

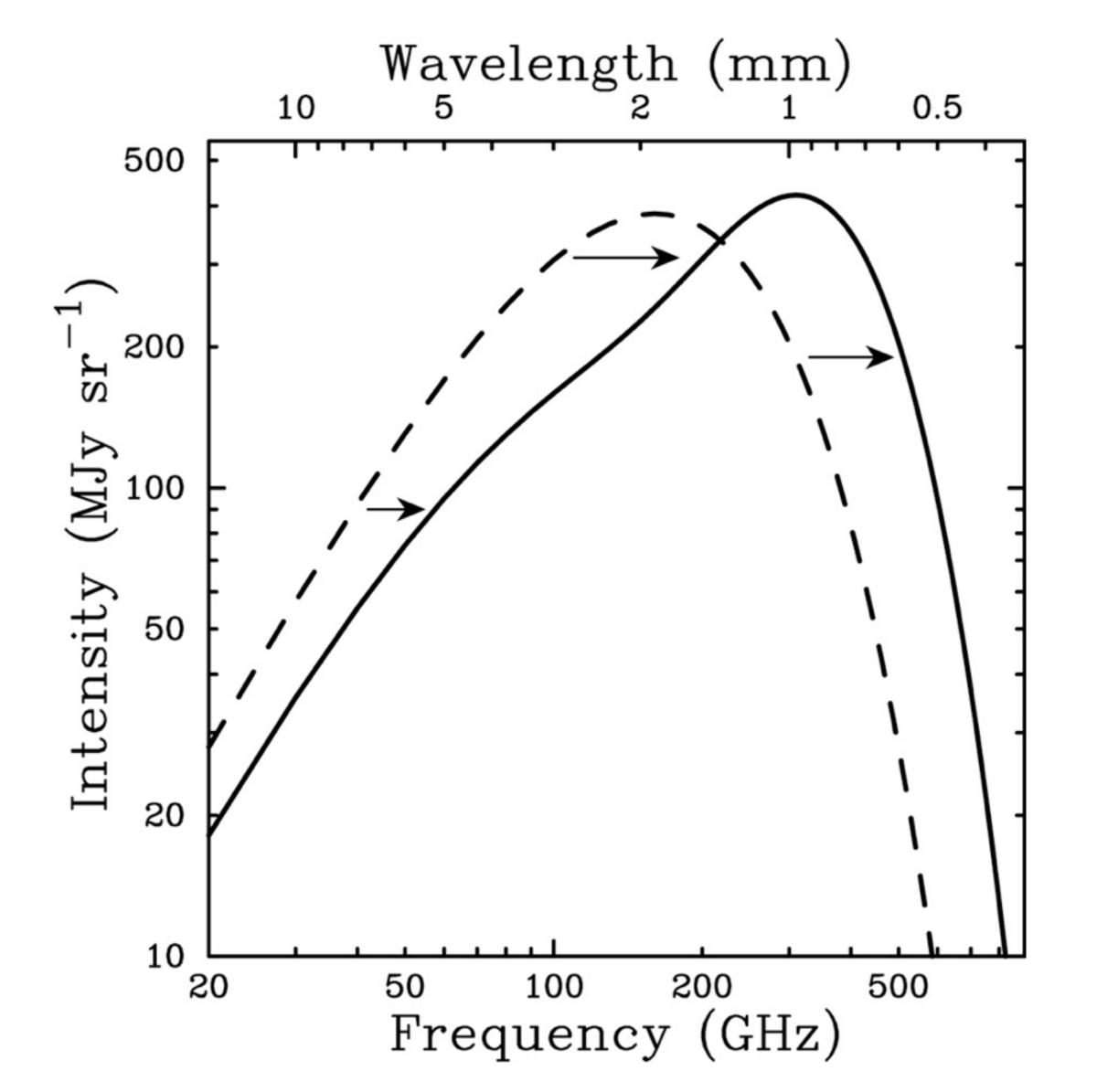


The SZ effect occurs when CMB photons Compton scatter off of electrons in the hot plasma that is the intracluster medium of rich clusters of galaxies.

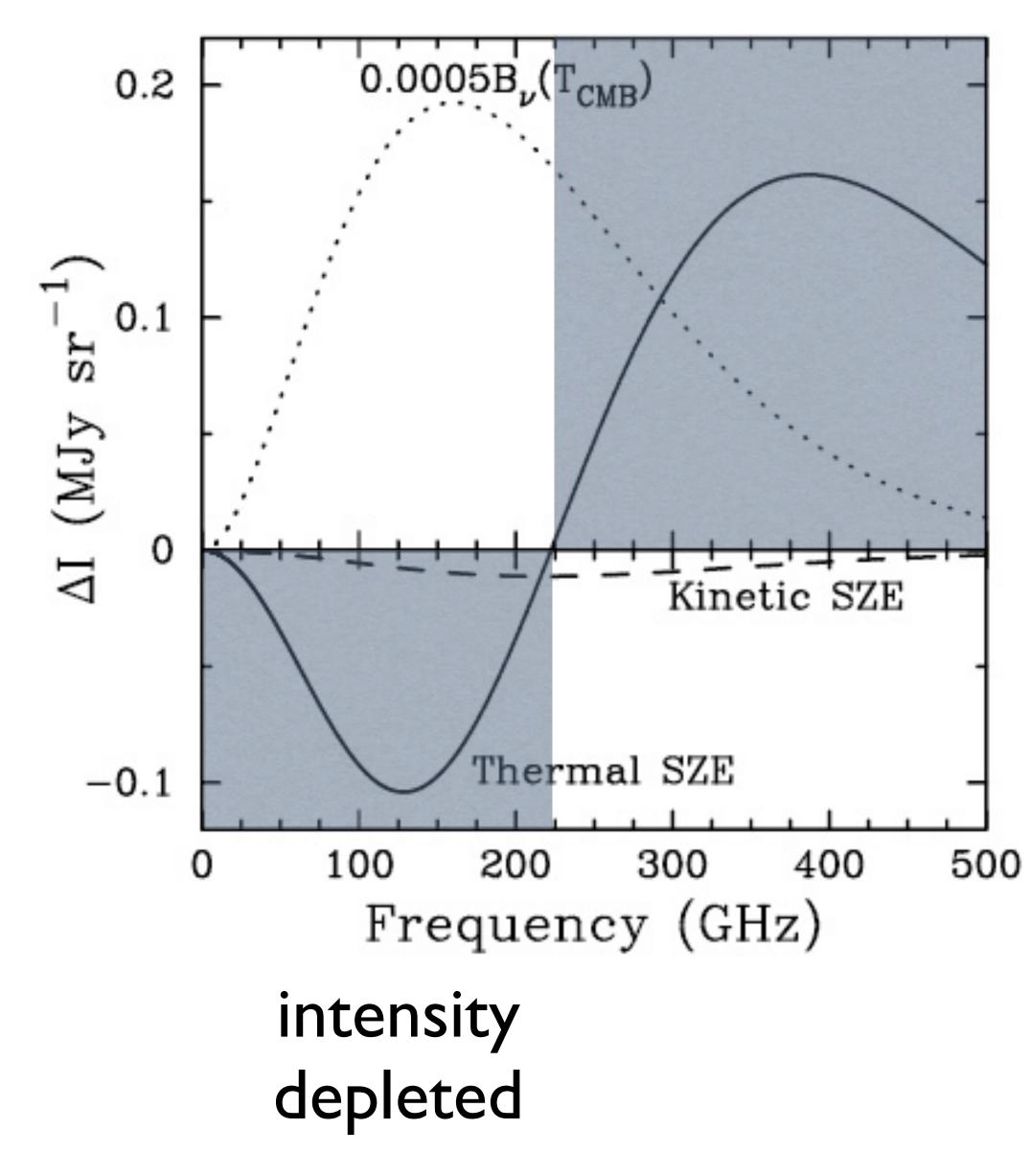




The SZ effect occurs when CMB photons Compton scatter off of electrons in the hot plasma that is the intracluster medium of rich clusters of galaxies. Results in a net increase in the effective radiation Temperature.

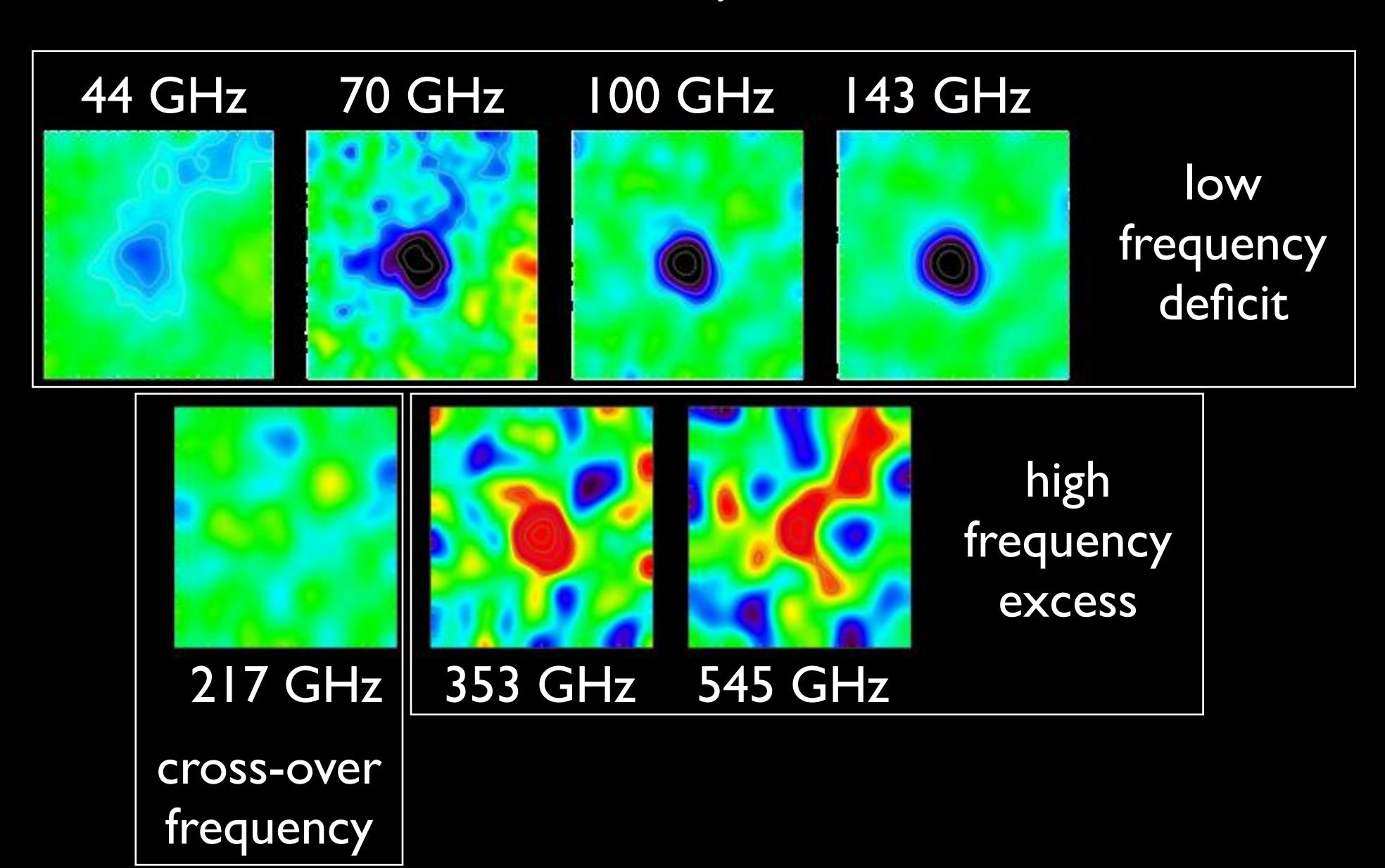


intensity boosted



SUNYAEV-ZEL'DOVICH EFFECT

detected by Planck



- Absolute Methods
 - Sunyaev-Zeldovich (SZ) effect

Cluster optical depth $\tau_{SZ} = 2\sigma_T n_e R_c$ where σ_T is the Thomson scattering cross-section, n_e is the electron density, and R_c is the cluster radius.

The X-ray flux is
$$f_X = \frac{4\pi}{3} \frac{R_c^3 \epsilon(\nu)}{4\pi D^2}$$

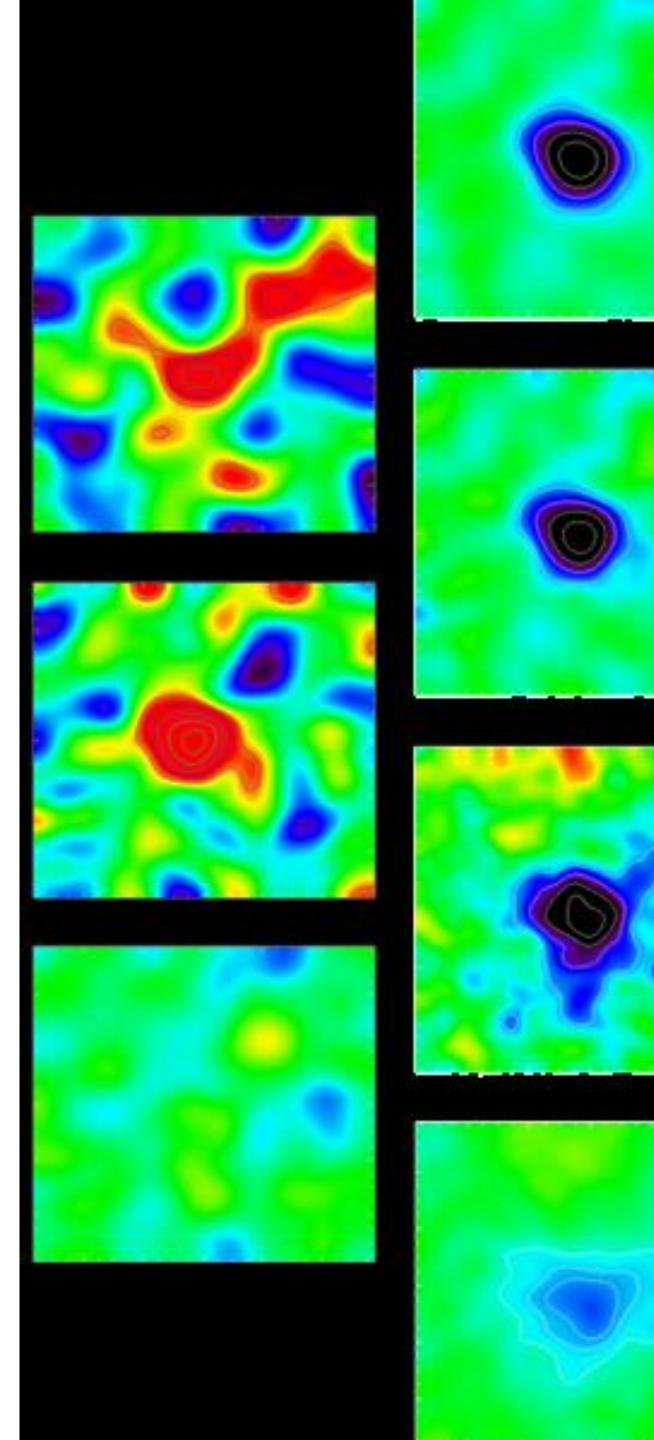
where the Bremsstrahlung emissivity is $\epsilon(\nu) = A n_e^2 T_X^{1/2} e^{-\frac{h\nu}{kT_X}}$

All of which can be combined to give the distance

$$D = \frac{A}{24\sigma_T} \frac{e^{-\frac{h\nu}{kT_X}}}{\sqrt{T_X}} \frac{\theta_X}{f_X} \frac{\tau_{SZ}^2}{(1+z)^2}$$

by equating the angular diameter θ_X with the path length $2R_c$ experienced by the CMB photons

$$H_0 = 69 \pm 8 \text{ km s}^{-1} \text{ Mpc}^{-1}$$
 Schmidt *et al.* 2004

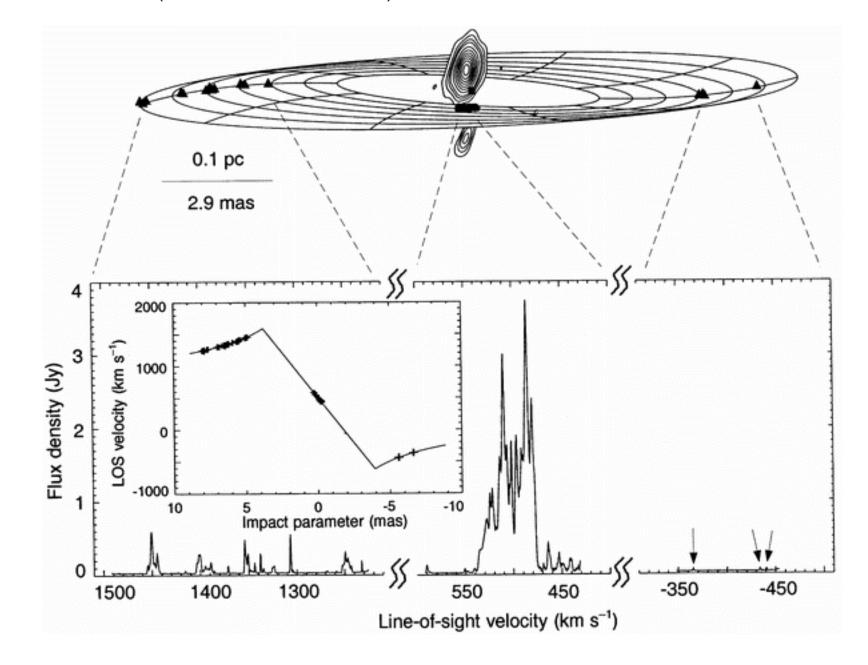


- Absolute Methods
 - water masers

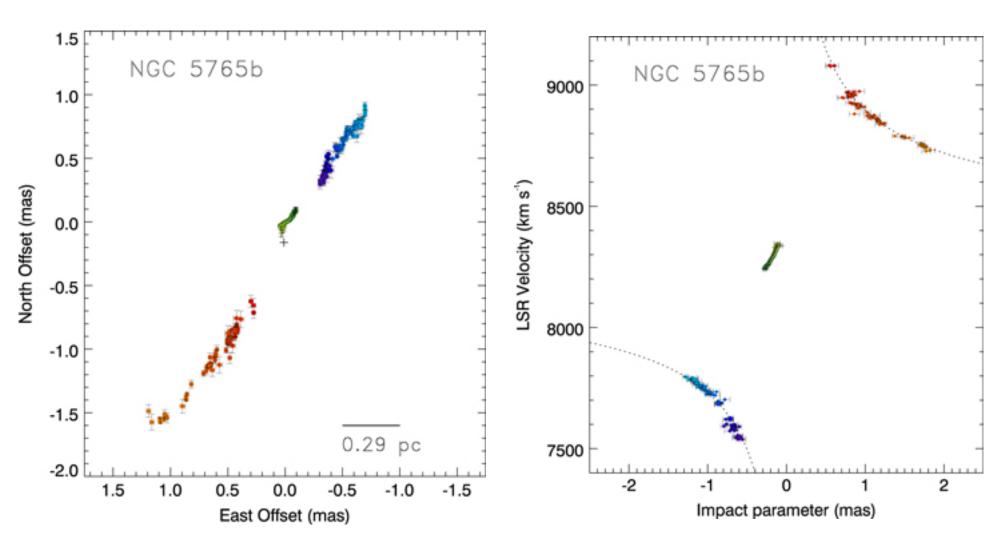
Conditions in the ISM are sometimes right to produce masers - the amplification of molecular lines due to level inversion, e.g., H_2O at 1.35 cm.

Sometimes found orbiting the central supermassive black holes of nearby galaxies. Can watch them orbit by tracking their positions with VLBI (proper motions at microarcsecond accuracy). Can also measure their radial velocities via the Doppler effect. We understand orbits around point masses, so these all combine to provide a geometric distance measurement that is independent of other rungs in the distance ladder.

NGC 4258 (Herrnstein et al 1999)



NGC 5765 (Gao et al 2016)



The dotted line shows the best-fit Keplerian rotation curve assuming an edge-on thin-disk model without disk warping. This model gives an enclosed mass of $4.4 \pm 0.44 \times 10^7 M_{\odot}$ and a recession velocity of 8304 km s⁻¹.

Absolute Methods

water masers

Herrnstein et al (1999) detect accelerations as well as velocities:

To convert the maser proper motions and accelerations into a geometric distance, we express $\langle \dot{\theta}_X \rangle$ and $\langle \dot{v}_{LOS} \rangle$ in terms of the distance and four disk parameters:

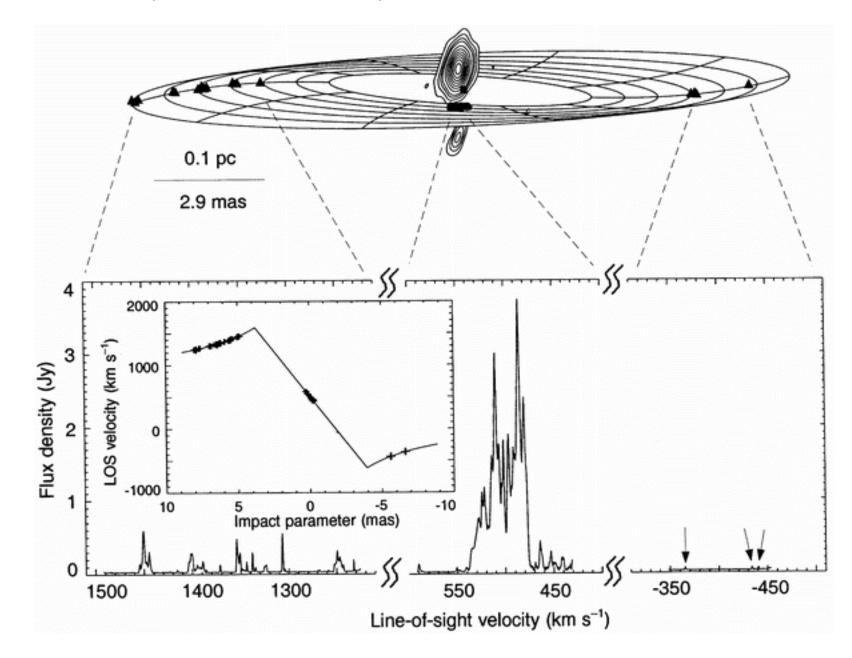
$$\langle \dot{\theta}_x \rangle = 31.5 \left[\frac{D_6}{7.2} \right]^{-1} \left[\frac{\Omega_s}{282} \right]^{1/3} \left[\frac{M_{7.2}}{3.9} \right]^{1/3} \left[\frac{\sin i_s}{\sin 82.3^{\circ}} \right]^{-1} \left[\frac{\cos \alpha_s}{\cos 80^{\circ}} \right] \, \muas \, yr^{-1}$$
(1)

and

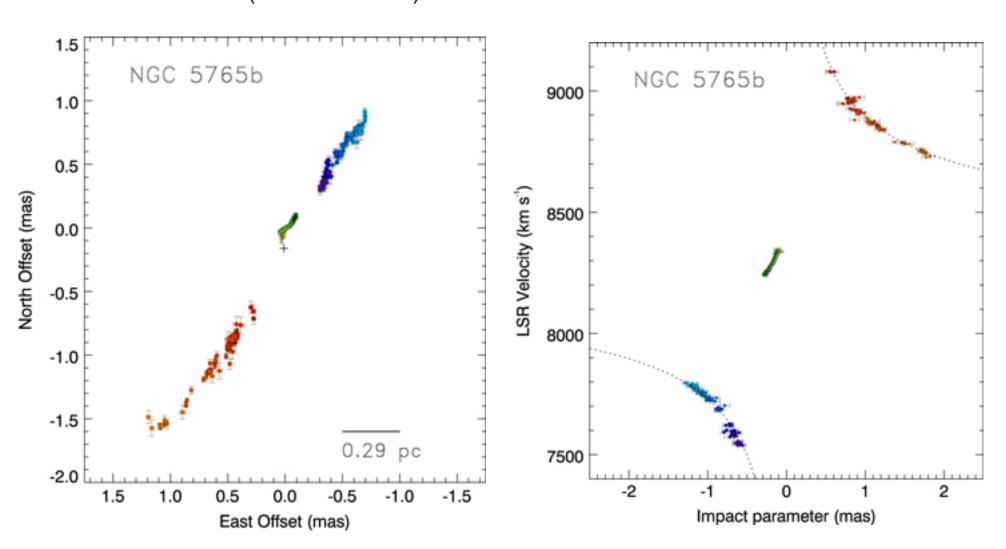
$$\langle \dot{v}_{LOS} \rangle = 9.2 \left[\frac{D_6}{7.2} \right]^{-1} \left[\frac{\Omega_s}{282} \right]^{4/3} \left[\frac{M_{7.2}}{3.9} \right]^{1/3} \left[\frac{\sin i_s}{\sin 82.3^{\circ}} \right]^{-1} \text{km s}^{-1} \text{ yr}^{-1}$$
 (2

Here D_6 is the distance in Mpc, α_s is the disk position angle (East of North) at $\langle r_s \rangle$, and $M_{7.2}$ is $M/D \sin^2 i_s$ as derived from the high-velocity rotation curve and evaluated at D=7.2 Mpc and $i_s=82.3^\circ$ (in units of $10^7 M_-$). $\Omega_s \equiv (GM_{7.2}/\langle r_s \rangle^{-3})^{1/2}$ is the projected disk angular velocity at $\langle r_s \rangle$ as determined by the slope of the systemic position–velocity gradient (in units of km s⁻¹ mas⁻¹; see Fig. 1). In the denominators of each of the terms of equations (1) and (2), we include *apriori* estimates for each of these disk parameters, derived directly from the positions and velocities of the masers.

NGC 4258 (Herrnstein et al 1999)

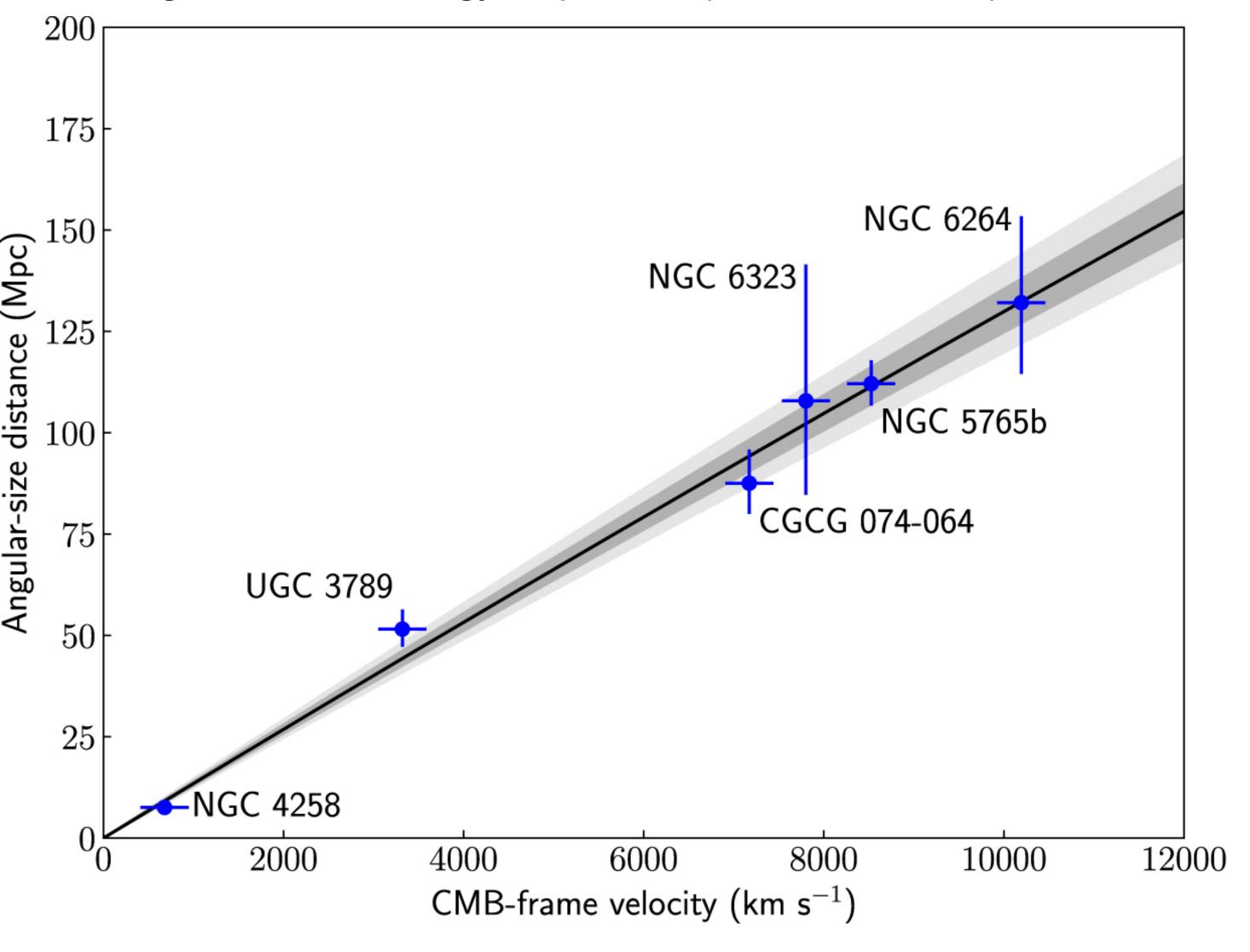


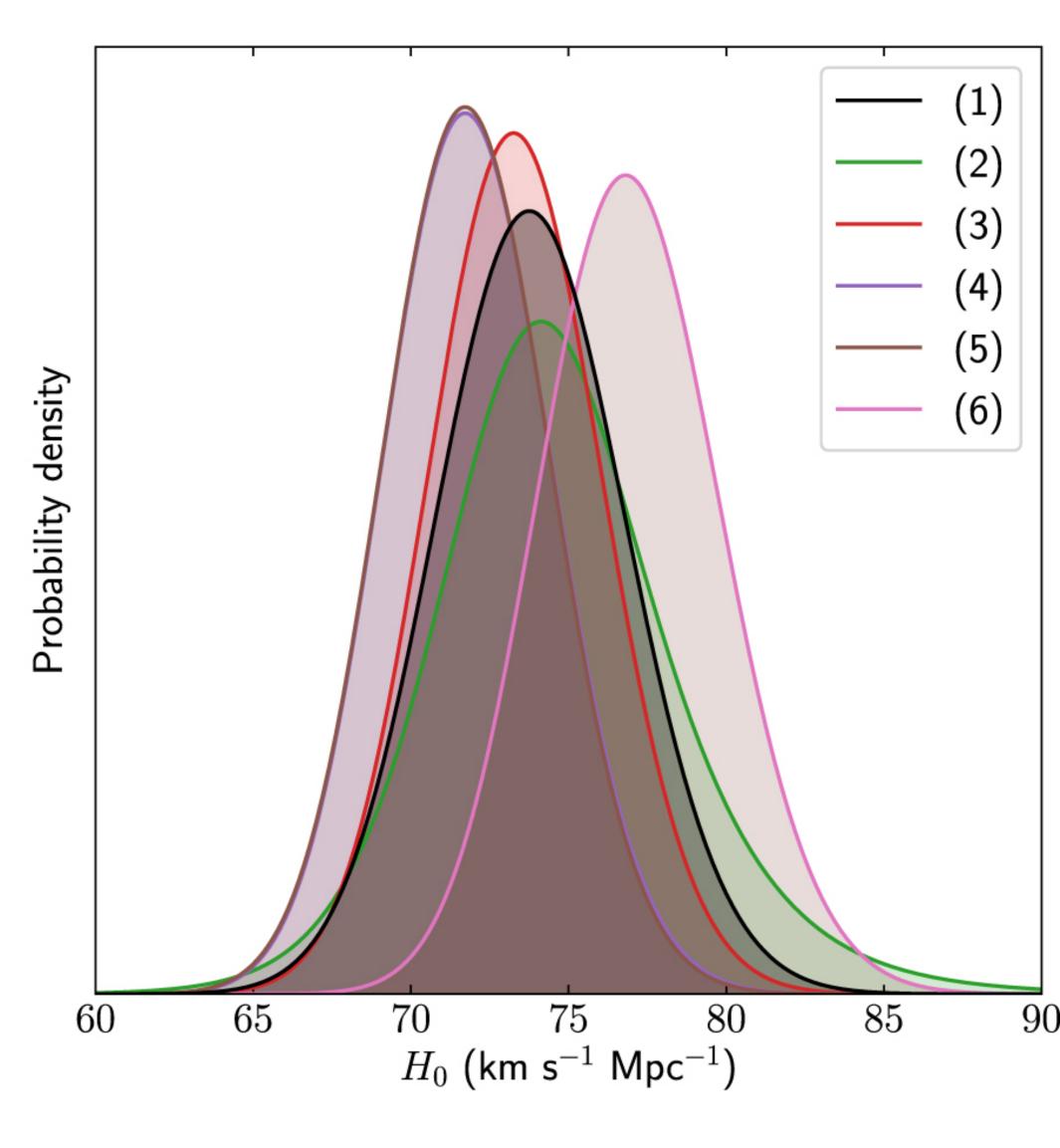
NGC 5765 (Gao et al 2016)



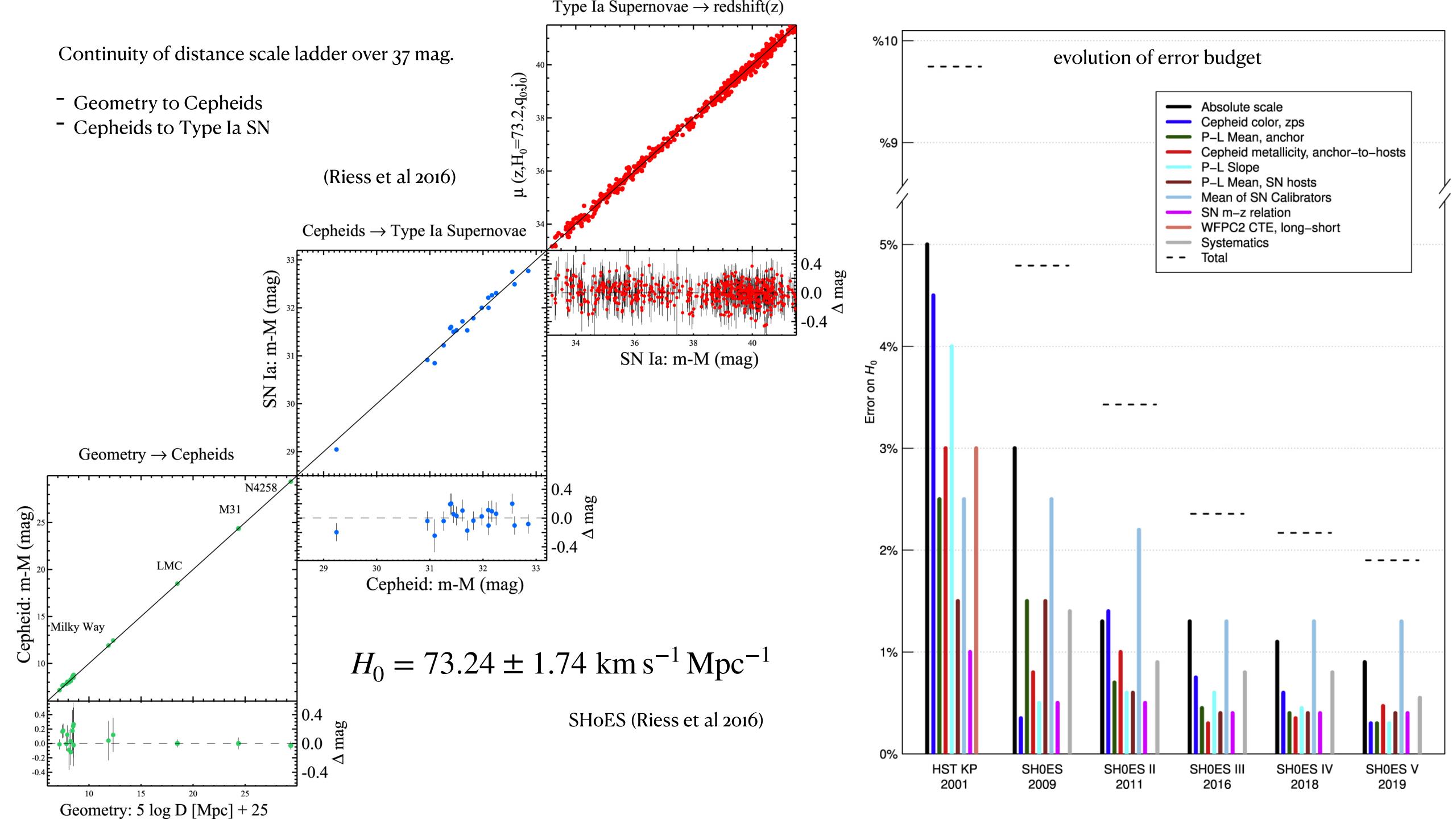
The dotted line shows the best-fit Keplerian rotation curve assuming an edge-on thin-disk model without disk warping. This model gives an enclosed mass of $4.4 \pm 0.44 \times 10^7 M_{\odot}$ and a recession velocity of 8304 km s⁻¹.

Megamaser Cosmology Project. XIII (Pesce et al. 2020)





 $H_0 = 73.9 \pm 3.0 \text{ km s}^{-1} \text{Mpc}^{-1}$



Hubble constant tension

Traditional distance ladder measurements favor H_0 in the low-to-mid 70s. These are "local," low redshift measurements ("late" in red at right).

Multi-parameter fits to power spectrum data from the CMB and large scale structure favor Ho in the mid-to-upper 60s. The CMB is from higher redshift ("early" in blue at right).

The difference is formally significant at over 4σ . This becomes 17σ if we take the recent Tully-Fisher uncertainty at face value!

The tension appears to be real

