Cosmology
 and Large Scale Structure

Today
Time and Distance
Observational Tests

Expansion history

$$
\Omega_{m}+\Omega_{r}+\Omega_{k}+\Omega_{\Lambda}=1
$$

Friedmann equation

$$
H^{2}(z)=H_{0}^{2}\left[\Omega_{m_{0}}(1+z)^{3}+\Omega_{r_{0}}(1+z)^{4}+\Omega_{k_{0}}(1+z)^{2}+\Omega_{\Lambda_{0}}\right]
$$

$$
H=\frac{\dot{a}}{a}
$$

$$
a=(1+z)^{-1}
$$

It is convenient to define the Expansion term

$$
E^{2}(z)=\Omega_{m_{0}}(1+z)^{3}+\Omega_{r_{0}}(1+z)^{4}+\Omega_{k_{0}}(1+z)^{2}+\Omega_{\Lambda_{0}}
$$

or equivalently

$$
E^{2}(a)=\Omega_{m_{0}} a^{-3}+\Omega_{r_{0}} a^{-4}+\Omega_{k_{0}} a^{-2}+\Omega_{\Lambda_{0}}
$$

So that or equivalently

$$
\frac{\dot{a}}{a}=H_{0} E(a)
$$

Expansion history

$$
\Omega_{m}+\Omega_{r}+\Omega_{k}+\Omega_{\Lambda}=1
$$

Friedmann equation

$$
H=\frac{\dot{a}}{a}
$$

$$
\frac{\dot{a}}{a}=H_{0} E(a)
$$

$$
a=(1+z)^{-1}
$$

If we don't know the full details of $E(a)$, we can make a Taylor expansion

$$
E(z)=\sqrt{\Omega_{m_{0}}(1+z)^{3}+\Omega_{r_{0}}(1+z)^{4}+\Omega_{k_{0}}(1+z)^{2}+\Omega_{\Lambda_{0}}}
$$

$$
a(t) \approx 1+H_{0}\left(t-t_{0}\right)-\frac{1}{2} q_{0} H_{0}^{2}\left(t-t_{0}\right)^{2}+\ldots
$$

where we see the deceleration parameter as the next term after the Hubble constant

$$
q=-\frac{a \ddot{a}}{\dot{a}^{2}}=-\frac{1}{H^{2}} \frac{\ddot{a}}{a}
$$

FIG. 3. "Standard" Friedmann models. The family of scale factors $R(\tau)$ for the "standard models" $(\Lambda=0)$. The free parameter, shown on the curves, is Ω_{0}. As shown by the τ intercepts, all models have ages $\leq 1\left(\leq H_{0}^{-1} \mathrm{yr}\right)$.
H_{0} is the slope
q_{o} is the next derivative the change in the slope

Have to see far away before you can start to perceive q_{o}, hence the desire for bright standard candles like supernovae.

Expansion history

$$
\Omega_{m}+\Omega_{r}+\Omega_{k}+\Omega_{\Lambda}=1
$$

There is an analytic solution for matter domination - can parameterize the expansion as a cycloid

$$
H=\frac{\dot{a}}{a}
$$

$$
a=\frac{\Omega_{m}}{2\left(1-\Omega_{m}\right)}(\cosh \eta-1)
$$

$$
a=(1+z)^{-1}
$$

$$
E(z)=\sqrt{\Omega_{m_{0}}(1+z)^{3}+\Omega_{r_{0}}(1+z)^{4}+\Omega_{k_{0}}(1+z)^{2}+\Omega_{\Lambda_{0}}}
$$

$$
H_{0} t=\frac{\Omega_{m}}{2\left(1-\Omega_{m}\right)^{3 / 2}}(\sinh \eta-\eta)
$$

where η is the development parameter - related to the conformal time
The current value of the development parameter is

$$
\cosh \eta_{0}=\frac{2}{\Omega_{m_{0}}}-1
$$

This is of no use now because of Lambda, BUT it does become useful for the growth of structure in the early universe, when every protogalaxy can be considered its own little island universe with $\Omega_{m} \gtrsim 1$

The proper distance to be the current comoving separation
time

$$
\begin{gathered}
D_{p}\left(t_{0}\right)=c \int_{t_{e}}^{t_{0}} \frac{d t}{a(t)} \\
a(t) \approx 1+H_{0}\left(t-t_{0}\right)-\frac{1}{2} q_{0} H_{0}^{2}\left(t-t_{0}\right)^{2}+\ldots
\end{gathered}
$$

years ago

In terms of redshift,

$$
D_{p}\left(z_{e}\right)=\frac{c}{H_{0}} \int_{0}^{z_{e}} \frac{d z}{E(z)}
$$

For zero cosmological constant, there is an exact solution known as Mattig's equation:

$$
D_{p}(z)=\frac{2 c}{H_{0}} \frac{\left[z \Omega_{m}+\left(\Omega_{m}-2\right)\left(\sqrt{1+z \Omega_{m}}-1\right]\right)}{\Omega_{m}^{2}(1+z)}
$$

In general, there is no analytic solution, but can approximate with the Taylor expansion:

$$
D_{p}(z)=\frac{c}{H_{0}}\left[z-\frac{1}{2}\left(1+q_{0}\right) z^{2}\right]
$$

Where the leading term is Hubble's Law

$$
D_{p}(z)=\frac{c z}{H_{0}}
$$

For time rather than distance

Friedmann equation

$$
\frac{\dot{a}}{a}=H_{0} E(a)
$$

$\left(t_{0}-t_{e}\right) \quad$ is the Lookback time - the time since the photon was emitted.
riedmann equation

$$
H_{0} \int_{t_{e}}^{t_{o}} d t=\int_{a_{e}}^{1} \frac{d a}{a E(a)}=\int_{0}^{z_{e}} \frac{d z}{(1+z) E(z)}
$$

$$
H_{0}\left(t_{0}-t_{e}\right)=\int_{0}^{z_{e}} \frac{d z}{(1+z) E(z)}
$$

$$
\Omega_{m}+\Omega_{r}+\Omega_{k}+\Omega_{\Lambda}=1
$$

$$
H=\frac{\dot{a}}{a}
$$

$$
a=(1+z)^{-1}
$$

$$
E(z)=\sqrt{\Omega_{m_{0}}(1+z)^{3}+\Omega_{r_{0}}(1+z)^{4}+\Omega_{k_{0}}(1+z)^{2}+\Omega_{\Lambda_{0}}}
$$

The age of the universe is obtained by setting

$$
t_{e}=0 ; z \rightarrow \infty
$$

$$
H_{0} t_{0}=\int_{0}^{\infty} \frac{d z}{(1+z) E(z)}
$$

$$
\Omega_{m}+\Omega_{r}+\Omega_{k}+\Omega_{\Lambda}=1
$$

$$
H=\frac{\dot{a}}{a}
$$

$$
a=(1+z)^{-1}
$$

$$
E(z)=\sqrt{\Omega_{m_{0}}(1+z)^{3}+\Omega_{r_{0}}(1+z)^{4}+\Omega_{k_{0}}(1+z)^{2}+\Omega_{\Lambda_{0}}}
$$

which can be approximated by

$$
t_{0} \approx\left(\frac{2}{3 H_{0}}\right)\left(0.7 \Omega_{m_{0}}+0.3-0.3 \Omega_{\Lambda_{0}}\right)^{-0.3}
$$

There is no deep theory in this last formula.
It is just a fitting formula that approximates the answer to a few \%.

Similarly, the redshift-age of a matter dominated universe can be approximated as

$$
\frac{1}{t(z)} \approx H(z)\left[1+\frac{1}{2} \Omega_{m}^{0.6}(z)\right]
$$

Figure 13.1. Lookback time as a function of redshift. The long dashes on the right-hand axis show the age t_{o} of the universe computed from $z \rightarrow \infty$. In panel (a) space curvature is negligible, and in panel (b) the cosmological constant, Λ, is negligibly small. The curves are labeled by the density parameter, Ω.

These cosmologies have only decelerated, so must have ages less than one Hubble time.

Observational Tests
 of cosmology

- Luminosity-redshift relation
- Angular size-distance relation
- Number-redshift relation
- Number-magnitude relation
- Tolman test
- redshift time derivative
$D_{L}-z$
$D_{A}-z$
$N(z)$
$N(m)$
$\Sigma(z)$

Standard Candle

Standard Rod

Source counts with redshift

Source counts with magnitude
Surface brightness not distance independent in Robertson-Walker geometry

Could conceivably measure expansion of universe directly in a human lifetime

