Cosmology

and Large Scale Structure

Today
Number counts
N(m); N(z)
Luminosity Functions

Observational Tests

Five Classic Tests

- Luminosity-redshift relation
- Angular size-redshift relation
- Number-redshift relation
- Number-magnitude relation
- Tolman test
$D_{L}-z$
$D_{A}-z$
$N(z)$
$N(m)$
$\Sigma(z)$

Standard Candle

Standard Rod

Source counts with redshift

Source counts with magnitude
Surface brightness not distance independent in Robertson-Walker geometry

Hubble Ultra Deep Field
$3^{\prime} \times 3^{\prime}$

Robertson-Walker metric

$$
d s^{2}=-c^{2} d t^{2}+a^{2}(t)\left[\frac{d r^{2}}{1-k r^{2}}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)\right]
$$

Volume

$$
V=a^{3} \int_{0}^{r} \frac{r^{2} d r}{\sqrt{1-k r^{2}}} \int_{0}^{\pi} \sin \theta d \theta \int_{0}^{2 \pi} d \phi
$$

integrates to

$$
f(r)= \begin{cases}\frac{3}{2}\left[\frac{\sin ^{-1} r}{r^{3}}-\frac{\sqrt{1-r^{2}}}{r^{2}}\right] \\ 1 & \text { for } k=\{ \\ \frac{3}{2}\left[\frac{\sqrt{1+r^{2}}}{0}-\frac{\sinh ^{-1} r}{2}\right]\end{cases}
$$

in terms of the proper distance

$$
D_{p}=a(t) \int_{0}^{r} \frac{d r}{\sqrt{1-k r^{2}}}
$$

we can make the Taylor expansion

$$
V=\frac{4 \pi}{3} D_{p}^{3}\left[1-\frac{k}{5}\left(\frac{D_{p}}{R}\right)^{2}+\mathcal{O}\left(\frac{D_{p}}{R}\right)^{4}\right] \quad \frac{k}{R^{2}} \quad \begin{aligned}
& \text { is the curvature } \\
& \text { of space }
\end{aligned}
$$

Note that the volume increases as the curvature becomes more negative, so a closed universe is "small" and an open universe is "big"

Sandage 1188, ARAA, 26,561

OBSERVATIONAL TESTS OF WORLD MODELS

Figure 1 Theoretical $N\left(z, q_{0}\right)$ relations for three values of q_{0}. Plotted is the integral count, i.e. the total number of galaxies in a complete (volume-limited) sample that have redshifts smaller than z. Parts (a) and (b) are the same function but plotted as $\log z(a)$ and $z(b)$.

Since the volume depends on curvature, source counts provide a test

For sources of luminosities L and constant comoving number density $\Phi(L)$,

Number-redshift:

$$
N(<z)=\frac{4 \pi}{3 H_{0}^{2}} z^{3} \int_{0}^{\infty} \Phi(L)\left[1+\frac{3}{2} z\left(1+q_{0}\right)\right] d L
$$

Number-magnitude:

$$
N(<f)=\frac{4 \pi}{3}(4 \pi f)^{-3 / 2} \int_{0}^{\infty} \Phi(L)\left[1-3 H_{0}\left(\frac{L}{4 \pi f}\right)^{1 / 2}\right] L^{3 / 2} d L
$$

Historically, radio source counts in the 1960 s played an important role in excluding the Steady State cosmology.

Sandage 1188, ARAA, 26,561

OBSERVATIONAL TESTS OF WORLD MODELS

Figure 1 Theoretical $N\left(z, q_{0}\right)$ relations for three values of q_{0}. Plotted is the integral count, i.e. the total number of galaxies in a complete (volume-limited) sample that have redshifts smaller than z. Parts (a) and (b) are the same function but plotted as $\log z(a)$ and $z(b)$.

Number-magnitude:

A "no evolution" model extrapolates the locally measured Schechter function to high redshift.

Only test that does not explicitly require redshift information.
Basically integrate over all the relevant distributions.

$$
N(m, T)=\int_{T} \int_{0}^{m} A(m, T) d T d m
$$

For sources of type T and magnitude m.

We can only get at the volume element if we understand the other terms and their redshift evolution.

Schechter function

$$
\Phi(L)=\Phi^{*}\left(\frac{L}{L^{*}}\right)^{-\alpha} e^{-L / L^{*}}
$$

L* Characteristic luminosity
$\Phi^{*} \quad$ Characteristic number density
$\alpha \quad$ Faint end slope

Population	$\boldsymbol{\operatorname { l o g } (\boldsymbol { M } ^ { * } \boldsymbol { h } _ { 0 . 7 } / \mathbf { M } _ { \mathrm { o } })}$	\mathbf{a}	$\boldsymbol{\phi}^{* / 10-3}$ $\left(\mathbf{d e x}-1 \mathbf{M p c}-3 \boldsymbol{h}_{0.73}\right)$
Early Type	10.74 ± 0.026	0.525 ± 0.029	3.67 +0.20
Late Type	10.70 ± 0.049	1.39 ± 0.021	0.855 +0.10

Since the volume depends on curvature, source counts provide a test

For sources of luminosities L and constant comoving number density $\Phi(L)$,

Number-redshift:

$$
N(<z)=\frac{4 \pi}{3 H_{0}^{2}} z^{3} \int_{0}^{\infty} \Phi(L)\left[1+\frac{3}{2} z\left(1+q_{0}\right)\right] d L
$$

Number-magnitude:

$$
N(<f)=\frac{4 \pi}{3}(4 \pi f)^{-3 / 2} \int_{0}^{\infty} \Phi(L)\left[1-3 H_{0}\left(\frac{L}{4 \pi f}\right)^{1 / 2}\right] L^{3 / 2} d L
$$

Historically, radio source counts in the 1960 s played an important role in excluding the Steady State cosmology.

FIG. 2 The galaxy number-redshift distribution, $n(z)$, for $22.5 \mathrm{mag}<$ $B<24$ mag implied by new redshift data acquired on the Keck Telescope (refs. 6, 7). The observed $n(z)$ is clearly more extended than the nonevolving models with either $q_{0}=0.05$ or $q_{0}=0.5$. The extended redshift distribution is well fitted by our evolutionary models whose parameters are described in Fig. 1 legend.

Large Scale Structure is apparent

 in the non-smoothness of $\mathrm{N}(\mathrm{z})$.Galaxies evolve!
Certainly in luminosity, probably also in number.

So a single Schechter fcn doesn't suffice.
All of these terms matter.
 large scale structure)

$$
\mathrm{n}(\mathrm{~L}) \leftrightarrow \Phi(\mathrm{M})
$$

Spikes in $\mathrm{N}(\mathrm{z})$ correspond to filament \& voids along the line of sight

Figure 3. A comparison of how the observed GSMF evolves as a function of redshift in our three, degree-scale, survey fields. In this plot the number density uncertainties are simply the Poissonian counting errors. The availability of three, non-contiguous, degree-scale survey fields allows an empirical measurement of the level of cosmic variance in the high-mass end of the GSMF (see text for discussion).

