Cosmology and Large Scale Structure

9 November 2020

TodayLarge Scale StructureThe Power SpectrumMeasurements of Ω_m

http://astroweb.case.edu/ssm/astr328/

Large Scale Structure Quantified with the **correlation function** $\xi(r)$ which is the Fourier transform of the **power spectrum** P(k).

The correlation function is the excess probability of finding a galaxy near another galaxy over that in a random distribution.

$$\frac{dN}{N} = [1 + \xi(r)]dV \qquad \qquad \xi(r) = \frac{V}{(2\pi)^3} \int P(k)e^{-\vec{k}\cdot\vec{r}} dk$$

 $\xi(r) \propto r^{-(n+3)}$ $P(k) \propto |\delta(k)|^2 \propto k^n$

Harrison-Zeldovich spectrum has n = 1, which is a Gaussian random field. Inflation predicts $n \approx 1$, but different flavors of Inflationary theory predict slightly different values depending on the shape of the Inflationary potential (the Inflaton). Planck measures $n = 0.965 \pm 0.004$

• Power spectrum of gala

The power spectrum is commonly used to quantify large scale structure. It is the related to the 2 point correlation function via Fourier transform.

2 point correlation function:

The 2 point correlation function is the probability of finding one galaxy near another in excess over a random distribution.

Power spectrum: $P(k) = \langle | e^{ik} \rangle$

where k is the wavenumber corresponding to the scale λ

Fourier transform:

$$\xi(\vec{r}) = \frac{V}{(2\pi)^3} \int |\delta_k|^2 e^{-i\vec{k}\cdot\vec{r}d^3k}$$

$$\int_{P(k)} P(k)$$

axies
$$\delta \equiv \frac{\delta \rho}{\rho}$$

$$\xi(r) = \left\langle \delta(\vec{x}) \cdot \delta(\vec{x} + \vec{r}) \right\rangle$$

$$\delta_k |^2 \rangle$$
 where $k = \frac{2\pi}{\lambda}$

averaged over volume V

Power Spectrum

Example: weather in Cleveland and Santa Barbara More power on long time scales in Cleveland (seasonal variation)

Latitude: 34°25'00'' Longitude: -119°41'07'' Elevation: 5' ID: 047902

Santa Barbara, CA

Power Spectrum

Example: weather in Cleveland and Santa Barbara Similar power on short time scales in Santa Barbara (diurnal variation)

A power spectrum is a Fourier transform that quantifies the relative variability on different scales

Superposition of two sinusoids

(e.g., diurnal and annual temperature variation)

0.1

10

 $k \ [\mathrm{Mpc}^{-1}]$

100

• Power spectrum of gal

Power law power spectrum:

where n = 1 is scale free, with the same power on all scales. This is observed to be nearly the case on large scales that have not yet collapsed. It is modulated on small scales by structure formation.

One way to think of it is the rms variation at each scale λ

$$M \sim \lambda^3$$

There is more rms variance on small scales, so more power there. [On very large scales, the universe is homogeneous, so no variance.]

By convention, the normalization is set on a scale of 8 Mpc, where

$$\frac{\delta N_{gal}}{N_{gal}} = 1 \quad \text{with correspo}$$

laxies	$\delta \equiv \frac{\delta \rho}{-}$	$k = \frac{2\pi}{2\pi}$
	ρ	λ

$$P(k) = \langle |\delta_k|^2 \rangle \propto k^n$$

$$\delta_{\rm rms} \propto M^{-(n+3)/6}$$

onding mass variance σ_8

Planck estimates: $n = 0.965 \pm 0.004$ $\sigma_8 = 0.811 \pm 0.006$

Jeans length at matterradiation equality

$$\lambda_J = c_s \sqrt{\frac{\pi}{G\rho}}$$

For photons,

$$P = \frac{1}{3}\rho a$$

imprints standard rod on surface of last scattering.

photon-baryon fluid $c_s^2 = \frac{\partial P}{\partial \rho} = \frac{1}{3}c^2$

sound speed of

at smaller scales, things go non-linear from gravitational collapse, pressure, dissipation, feedback, etc. Described by a Transfer function

$$T(k) \equiv \frac{\delta_k(z=0)}{D(z)\delta_k(z)}$$

where D(z) is the linear growth factor - what it would have been without all these nasty non-linear effects.

Large Scale Structure Quantified with the **correlation function** $\xi(r)$ which is the Fourier transform of the **power spectrum** P(k).

The correlation function is the excess probability of finding a galaxy near another galaxy over that in a random distribution.

$$\frac{dN}{N} = [1 + \xi(r)]dV \qquad \qquad \xi(r) = \frac{V}{(2\pi)^3} \int P(k)e^{-\vec{k}\cdot\vec{r}} dk$$

 $\xi(r) \propto r^{-(n+3)}$ $P(k) \propto |\delta(k)|^2 \propto k^n$

Harrison-Zeldovich spectrum has n = 1, which is a Gaussian random field. Inflation predicts $n \approx 1$, but different flavors of Inflationary theory predict slightly different values depending on the shape of the Inflationary potential (the Inflaton). Planck measures $n = 0.965 \pm 0.004$

 $k^{3}k$

Detailed shape of the acoustic power spectrum depends sensitively on cosmic parameters. First and foremost, the location of the first peak measures the angular diameter distance to the surface of last scattering. This is the best evidence that the universe is very nearly flat: $\Omega_k = -0.011 \pm 0.006$ (Planck X 2018)

Multipole moment, ℓ

Detailed shape of the acoustic power spectrum depends sensitively on cosmic parameters.

Best-fit cosmology obtained from multi-parameter fit. Well constrained, but not unique - lots of parameter degeneracy.

Compression and rarefaction nearly cancel out, but don't quite. Left with

 δT $1 \delta \rho$ T3

Damped and driven oscillator

Baryons damp oscillations, like a kid dragging his feet on a swing. pure damping spectrum in limit of all baryons

Dark matter helps drive oscillations, like a parent pushing the kid.

Wayne Hu provides a nice CMB tutorial at http://background.uchicago.edu/index.html

CMB dependence on the density of baryonic and non-baryonic matter

Multipole /

3rd peak strong evidence for physics beyond baryonic drag.

This is usually interpreted to require the existence of nonbaryonic cold dark matter, which Planck requires at over 50 *σ*:

 $\Omega_{\rm CDM} h^2 = 0.1206 \pm 0.0021$

However, the interpretation remains ambiguous - could also be a modification of gravity (e.g., RelMOND: arXiv: 2007.00082 gives an identical power spectrum.)

Detailed shape of the acoustic power spectrum depends sensitively on cosmic parameters.

Best-fit cosmology obtained from multi-parameter fit. Well constrained, but not unique - lots of parameter degeneracy.

Baseline model $\mathbf{2}$

$base_plikHM_TT_lowl_lowE$ 2.1

Parameter	Best fit	68% limits	Parameter	Best fit	68% limits	Parameter	Best fit	68% lim
$\Omega_{ m b}h^2$	0.022126	0.02212 ± 0.00022	$\sigma_8 \Omega_m^{0.25}$	0.6116	0.611 ± 0.012	H(0.15)	72.23	72.25 ± 0
$\Omega_{ m c}h^2$	0.12068	0.1206 ± 0.0021	$\sigma_{8}/h^{0.5}$	0.9938	0.993 ± 0.016	$D_{\rm M}(0.15)$	647.8	647.7 ± 7
$100 heta_{ m MC}$	1.040748	1.04077 ± 0.00047	$r_{\rm drag}h$	98.40	98.5 ± 1.6	H(0.38)	82.50	82.52 ± 0
au	0.0523	0.0522 ± 0.0080	$\langle d^2 \rangle^{1/2}$	2.4537	2.454 ± 0.038	$D_{\rm M}(0.38)$	1542.6	1542 ± 1
$\ln(10^{10}A_{\rm s})$	3.0413	3.040 ± 0.016	$z_{\rm re}$	7.54	7.50 ± 0.82	H(0.51)	89.310	89.32 ± 0
$n_{ m s}$	0.9635	0.9626 ± 0.0057	$10^9 A_s$	2.0933	2.092 ± 0.034	$D_{\rm M}(0.51)$	1996.8	1997 ± 1
$y_{ m cal}$	1.00046	1.0004 ± 0.0025	$10^9 A_{\rm s} e^{-2\tau}$	1.8853	1.884 ± 0.014	H(0.61)	94.998	95.01 ± 0
$A_{217}^{ m CIB}$	48.5	48 ± 7	D_{40}	1231.7	1234 ± 15	$D_{\rm M}(0.61)$	2322.3	2322 ± 2
$\xi^{ m tSZ imes CIB}$	0.32	_	D_{220}	5710.4	5713 ± 42	H(2.33)	236.75	236.7 ± 1
$A_{143}^{ m tSZ}$	7.03	5.1 ± 2.0	D ₈₁₀	2538.2	2536 ± 14	$D_{\rm M}(2.33)$	5777.8	5778 ± 1
A_{100}^{PS}	254.9	263 ± 28	D_{1420}	815.5	814.4 ± 5.1	$f\sigma_{8}(0.15)$	0.4642	$0.464 \pm 0.$
A^{PS}_{143}	49.8	49 ± 8	D_{2000}	229.94	229.5 ± 1.8	$\sigma_8(0.15)$	0.7500	$0.7492 \pm 0.$
$A^{\rm PS}_{143\times 217}$	47.3	44 ± 9	n _{s,0.002}	0.9635	0.9626 ± 0.0057	$f\sigma_{8}(0.38)$	0.4804	$0.4798 \pm 0.$
A_{217}^{PS}	119.9	115 ± 10	$Y_{\rm P}$	0.245295	$0.24529\substack{+0.00011\\-0.000088}$	$\sigma_8(0.38)$	0.6638	0.6631 ± 0.6631
A^{kSZ}	0.00	< 4.84	$Y_{\rm P}^{\rm BBN}$	0.246621	$0.24661\substack{+0.00011\\-0.000089}$	$f\sigma_{8}(0.51)$	0.4779	$0.4773 \pm 0.$
$A_{100}^{{ m dust}TT}$	8.86	8.9 ± 1.8	$10^5 \mathrm{D/H}$	2.6321	2.634 ± 0.042	$\sigma_8(0.51)$	0.6208	$0.6202 \pm 0.6202 \pm 0.0202 \pm 0$
$A_{143}^{{ m dust}TT}$	10.80	10.7 ± 1.8	Age/Gyr	13.8300	13.830 ± 0.037	$f\sigma_8(0.61)$	0.4722	$0.4716\pm0.$
$A_{143 imes 217}^{{ m dust}TT}$	19.43	18.3 ± 3.3	z_*	1090.292	1090.30 ± 0.41	$\sigma_8(0.61)$	0.5904	$0.5899 \pm 0.$
$A_{217}^{\mathrm{dust}TT}$	94.8	93.3 ± 7.4	r_*	144.442	144.46 ± 0.48	$f\sigma_8(2.33)$	0.29733	$0.2971 \pm 0.$
c_{100}	0.99965	0.99961 ± 0.00061	$100\theta_*$	1.040956	1.04097 ± 0.00046	$\sigma_{8}(2.33)$	0.30613	$0.3059 \pm 0.$
c_{217}	0.99825	0.99826 ± 0.00063	$D_{\rm M}(z_*)/{ m Gpc}$	13.8759	13.878 ± 0.044	f_{2000}^{143}	30.49	31.2 ± 3
H_0	66.86	66.88 ± 0.92	$z_{\rm drag}$	1059.437	1059.39 ± 0.46	$f_{2000}^{143\times 217}$	33.34	33.6 ± 2
Ω_{Λ}	0.6791	0.679 ± 0.013	$r_{\rm drag}$	147.182	147.21 ± 0.48	f_{2000}^{217}	107.77	108.2 ± 1
$\Omega_{\rm m}$	0.3209	0.321 ± 0.013	$k_{\rm D}$	0.14058	0.14054 ± 0.00052	$\chi^2_{\rm simall}$	395.88	397.0 ± 1
$\Omega_{\rm m}h^2$	0.14345	0.1434 ± 0.0020	$100\theta_{\rm D}$	0.161051	0.16107 ± 0.00027	$\chi^2_{\rm lowl}$	23.60	23.9 ± 1
$\Omega_{\rm m} h^3$	0.095909	0.09589 ± 0.00046	$z_{\rm eq}$	3412.7	3411 ± 48	$\chi^2_{\rm plik}$	758.7	771.4 ± 3
σ_8	0.8126	0.8118 ± 0.0089	keq	0.010416	0.01041 ± 0.00014	$\chi^2_{\rm prior}$	1.35	$7.3 \pm 3.$
S_8	0.8405	0.840 ± 0.024	$100\theta_{eq}$	0.8106	0.8109 ± 0.0089	$\chi^2_{\rm CMB}$	1178.2	1192.3 \pm
$\sigma_8\Omega_{\rm m}^{0.5}$	0.4604	0.460 ± 0.013	$100\theta_{\rm s,eq}$	0.44817	0.4483 ± 0.0046			

Best-fit $\chi^2_{\text{eff}} = 1179.58$; $\bar{\chi}^2_{\text{eff}} = 1199.58$; R - 1 = 0.00927

 χ^2_{eff} : CMB - simall_100x143_offlike5_EE_Aplanck_B: 395.88 commander_dx12_v3_2_29: 23.60 plik_rd12_HM_v22_TT: 758.75

https://wiki.cosmos.esa.int/planck-legacy-archive/images/b/be/Baseline_params_table_2018_68pc.pdf

its 0.787.9.5616).44 18).35201.3160.0120.0075.0095.0060.0082.00550.00720.00510.0025.0027.0 .0 1.91.7..3 5.5.7 = 5.5

85

H₀ Expansion rate

Cosmology today: tension in H_0 ...and Ω_m

The CMB best fits have marched away from the original concordance region

<u>Measurements of the gravitating mass density</u>

- Cluster M/L
 - measure M/L of a cluster, combine with measured luminosity density of universe.
- Weak lensing
 - measure shear over large scales
- Peculiar Velocity Field
 - measure deviations from Hubble flow
- Power spectrum of galaxies
- CMB fits

Measurements of the gravitating mass density

• Cluster M/L

- measure M/L of a cluster, combine with measured luminosity density of universe.
- j from integrating the luminosity function of galaxies:

$$\rho_m = \left(\frac{l}{r}\right)$$

– Also, cluster baryon fractions:

$$f_b = \frac{M_b}{M_{tot}} \quad \longrightarrow \quad \Omega_m = \frac{\Omega_b}{f_b}$$

both assume clusters are _____ representative of the whole.

FIG. 2.-Composite mass-to-light ratio of different systems-galaxies, groups, clusters, and superclusters-as a function of scale. The best-fit $M/L_B \propto R$ lines for spirals and ellipticals (from Fig. 1) are shown. We present median values at different scales for the large samples of galaxies, groups and clusters, as well as specific values for some individual galaxies, X-ray groups, and superclusters. Typical 1 σ uncertainties and 1 σ scatter around median values are shown. Also presented, for comparison, are the M/L_B (or equivalently Ω) determinations from the cosmic virial theorem, the least action method, and the range of various reported results from the Virgocentric infall and large-scale bulk flows (assuming mass traces light). The M/L_B expected for $\Omega = 1$ and $\Omega = 0.3$ are indicated.

Bahcall, Lubin, & Dorman (1995)

Measurements of the gravitating mass density

Weak lensing measure shear over large scales

$\Omega_m \approx 0.18 \pm 0.04$

Dark Energy Survey arxiv:2002.11124

Hasn't changed much. Hoekstra et al (2001) state "For ... $\Omega_m + \Omega_{\Lambda} = 1$, we obtain $\Omega_m = 0.13 + /-0.07$."

<u>Measurements of the gravitating mass density</u>

• Peculiar Velocity Field – measure deviations from Hubble flow

$\Omega_m = 0.25 \pm 0.05$

Tonry & Davis (1981), updated to modern H_o basically unchanged for nearly 40 years

FIG. 1.—On a two-dimensional grid with the Earth and the Virgo cluster on the x axis, redshift contours are plotted for a Hubble flow perturbed by a Virgocentric flow. An infall velocity of 400 km s⁻¹ at our position is assumed. A pure Hubble flow would be concentric circles.

