DARK MATTER

ASTR 333/433 **FALL 2013** МТ 4:00-5:15рм **SEARS 552**

PROF. STACY MCGAUGH SEARS 573 368-1808 stacy.mcgaugh@case.edu

Stars

Galaxies are made of stars

Spectral Types Luminosity Classes Stellar Evolution IMF

Fig 1.1 'Galaxies in the Universe' Sparke/Gallagher CUP 2007

A star's full classification includes a **spectral type** (**OBAFGKM**) and a **luminosity class** (related to the size & surface gravity of a star - bigger is brighter):

- I supergiant
- II bright giant
- III giant
- IV subgiant
- V dwarf (main sequence)
- Examples: Sun G2 V Sirius — A1 V Proxima Centauri — M5.5 V Betelgeuse — M2 I

The width of lines varies with surface gravity

Typical Stellar composition

- Hydrogen mass fraction X = 0.74
- Helium mass fraction Y = 0.25
- Heavier elements ("metals"): $Z \approx 0.01$

Abundances of H & He set during Big Bang. Heavier elements made in previous generations of stars. Z often called "metallicity" and sometimes referenced to the iron abundance, [Fe/H].

open cluster

Stellar populations

- Simple Single Population (SSP)
 stars of all masses born at the same time
 - e.g., a star cluster
- Complex stellar population
 - Convolution of many star forming events
 - need to know
 - IMF (initial mass function)
 - Birthrate (star formation rate history)

globular cluster

Main Sequence Stars

- Obey scaling relations
- Mass-Radius relation

 more massive stars are bigger
- Mass-Luminosity relation

 more massive stars are brighter

Main-sequence stars (to scale)

Mass-Luminosity Relation

 0.08 M_{\odot} = minimum mass for a star

Mass-Luminosity Relation

roughly $L \propto M^{3.5}$

- more massive stars **much** brighter
- use their fuel **much** faster
 - Mass: fuel supply $(E = mc^2)$
 - Luminosity: rate of fuel usage

Mass is finite - the stars don't shine forever!

Mass-Luminosity Relation: $L \propto M^{3.5}$

$$t \propto \frac{M}{L} \propto \frac{M}{M^{3.5}} \propto M^{-2.5}$$

So as mass increases, the main sequence lifetime decreases.

Off the Main Sequence

- Stellar properties depend on both mass and age: those that have finished fusing H to He in their cores are no longer on the main sequence.
- All stars become larger and redder after exhausting their core hydrogen: **giants** and **supergiants**.
- Most stars end up small and dim after fusion has ceased: white dwarfs.

Theoretical evolutionary tracks

The MAIN SEQUENCE is a sequence in MASS

For stars, mass is destiny

more massive stars

- are much brighter
- live shorter lives

Life Track of a Sun-Like Star

B-V

Dead Stars leave corpses

- White dwarfs
 - remnants of low mass stars like the sun
- Neutron stars
- Black Holes
 - remnants of high mass stars

Sequester mass but emit little light

Fig 2.3 'Galaxies in the Universe' Sparke/Gallagher CUP 2007

Low mass stars exist in the greatest numbers and contain most of the mass. High mass stars produce most of the light.

IMF vs PDF

Fig 2.4 'Galaxies in the Universe' Sparke/Gallagher CUP 2007

Pleiades:

Fig 2.5 (E. Moreau) 'Galaxies in the Universe' Sparke/Gallagher CUP 2007

Bell & de Jong (2001) models

 Table 5

 Self-Consistent Population Synthesis Mass-to-Light Ratios

Model	a_V	b_V	α_I	β_I	$lpha_{[3.6]}$	$\beta_{[3.6]}$	$\Upsilon^V_{0.6}$	$\Upsilon^I_{0.6}$	$\Upsilon^{[3.6]}_{0.6}$
Bell et al. (2003)	-0.628	1.305	-0.259	0.565	-0.313	-0.043	1.43	1.20	0.46
Portinari et al. (2004)	-0.654	1.290	-0.302	0.644	-0.575	0.394	1.32	1.22	0.46
Zibetti et al. (2009)	-1.075	1.837	-0.446	0.915	-1.115	1.172	1.07	1.27	0.39
Into & Portinari (2013)	-0.900	1.627	-0.394	0.820	-0.841	0.771	1.19	1.25	0.42

Note. — Stellar mass-to-light ratios in the V, I, and K-bands given by the formula $\log \Upsilon^j_* = \alpha_j + \beta_j (B - V)$. For each model, the V-band is identical to that in Table 3, but the I and [3.6] bands have been revised to attain self-consistency with the V-band (see text). For reference, the mass-to-light ratio at B - V = 0.6 is also given.

$$\log\left(\frac{M_*}{L_i}\right) = a_i + b_i(B - V)$$

Older populations (like in Elliptical galaxies) can have larger mass-to-light ratios, but usually $\left(\frac{M_*}{L}\right) < 5 \frac{M_{\odot}}{L_{\odot}}$