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Galaxy Clusters

4 distinct measures: velocity dispersion, gravitational lensing, hydrostatic
equilibrium of X-ray gas, and the Sunyaev-Zel'dovich effect




Mass estimators for Clusters of Galaxies
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Clusters in optical and X-ray (contours)
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Clusters in optical and X-ray (contours)
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Clusters in optical and X-ray (contours)
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Bremsstrahlung

Gas falling into clusters shock

heats to the virial temperature

of the potential, KT ~ mV?2 ‘w\
resulting in an intracluster TN e,
medium (ICM) composed of hot
plasma. This plasma radiates in
X-rays via Bremsstrahlung
(braking radiation). |
[Sometimes also called ‘f :
free-free radiation]

Just classical radiation from

accelerated charges.



Global

correlations in
galaxy clusters

Figure 4. Logarithm of the X-ray temperature
versus logarithm of optical velocity dispersion for
a sample of groups (circles) and clusters
(triangles). The group data are taken from the
literature compilation of Xue & Wu (2000), with
the addition of the groups in Helsdon & Ponman
(2000). The cluster data are taken from Wu et al
(1999). The solid line represents the best-fit found
by Wu et al (1999) for the clusters sample (using
an orthogonal distance regression method).
Within the large scatter, the groups are consistent
with the cluster relationship.

Velocity dispersion-Temperature relation

Mulchaey Annu. Rev. Astron. Astrophys. 2000. 38: 289



Global

correlations in
galaxy clusters
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Figure 5. Logarithm of optical velocity
dispersion versus logarithm of X-ray luminosity
for a sample of groups (circles) and clusters
(triangles). The data are taken from the same
sources cited in Figure 4. The solid line
represents the best-fit found by Wu et al (1999)
for the clusters sample (using an orthogonal
distance regression method).

Velocity dispersion-Luminosity relation

Mulchaey Annu. Rev. Astron. Astrophys. 2000. 38: 289
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correlations in
galaxy clusters

| g ;
Che s T (keV)

05 0
Log T (keV)

Figure 6. Logarithm of the X-ray temperature
versus logarithm of X-ray luminosity for a
sample of groups (circles) and clusters
(triangles). The data are taken from the same
sources cited in Figure 4. The solid line
represents the best-fit found by Wu et al (1999)
for the clusters sample (using an orthogonal
distance regression method). The observed
relationship for groups is somewhat steeper than
the best-fit cluster relationship.

Luminosity-Temperature relation
Mulchaey Annu. Rev. Astron. Astrophys. 2000. 38: 289




Beta models

The X-ray surface brightness at a projected radius R

for an 1sothermal sphere 1s given by:

S(R) = So[1 + (R/r.)?]~3P+1/2

S 0 central surface brightness
T core radius of gas distribution
,UTnp()'2 specific energy in gal

=T

axies

specific energy in the |

not gas



2 . . .
e specific energy in galaxies

b=

kTg specific energy in the hot gas

u 1s the mean molecular weight
mp 1s the mass of the proton
O 1s the one-dimensional velocity dispersion of the galaxies

T’; 1s the temperature of the ICM

Typically the gas is assumed to be isothermal

[ treated as fit parameter; typically ~ 2/3
BUT often higher when sigma well measured;
and often lower in groups



Mass Estimator
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Rasheed (2010)
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Typical result:
clusters have progressively more gas than stars at higher masses



Rasheed (2010)

variation with radius within individual clusters
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Typical result:
the baryon fraction increases with radius
(not often measured beyond Rsoo)
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There seems to be a missing baryon
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problem towards the centers of clusters
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ICM gas outweighs the stars by factor of ~6;
outweighed by dark matter by the same factor

M, ~ 6M,, ~ 6°M.  (crudely speaking —
detail, varies with mass)
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