DARK MATTER

 ASTR 333/433TODAY
Range of Galaxy Properties
The Interstellar Medium
Baryonic Mass Estimators

Baryonic Mass of Galaxies

$$
M_{b}=M_{*}+M_{g}=\Upsilon_{*} L+\frac{1}{X}\left(M_{H I}+M_{H_{2}}\right)
$$

$$
X \approx 0.73 \text { (hydrogen fraction) }
$$

- Stars $\quad M_{*}=\Upsilon_{*}^{i} L_{i} \quad L_{i}=4 \pi D^{2} F_{i}$
- Υ_{*}^{i} is the stellar mass-to-light ratio in photometric band i
- Gas
- Atomic gas - H I
- $M_{H I}=2.36 \times 10^{5} D^{2} F_{H I}$
- Molecular gas - H_{2}
- $M_{H_{2}}=1.1 \times 10^{4} D^{2} F_{C O}$
also scales with stellar mass $\quad M_{H_{2}} \approx 0.07 M_{*}$ at least for late type galaxies

NGC 3379
Early Type (Elliptical)

$$
\text { NGC } 891
$$

(Edge-on Disk)

UGC 2885

Sizes and masses of galaxies

Late Type Galaxies are typically Exponential disks

Azimuthally averaged light distribution approximately exponential for spiral disks.

The surface brightness profile is obtained by fitting ellipses to galaxy images, as in this example from Schombert (2007) using ARCHANGEL.

Fig. 2.- The resulting ellipse fits to NGC 3193's core region. While the automatic masking of the contaminating star is not perfect, it is sufficient to maintain a high quality fit.

Early Type Galaxies typically have de Vaucouleurs $\mathbf{r}^{1 / 4}$ profiles

里
$-1+2-2+2$ ．

\qquad
\square

\qquad
\qquad
－
\square
(

Gas and Stars in Galaxies

Beware selection effects! Catalogs are always dominated by brightest objects

The apparent numbers of galaxies in magnitudelimited samples decreases with decreasing mass, while their intrinsic numbers increase.

Moffett et al. 2016, MNRAS, 457, 1308

ISM

The stuff between the stars

Atomic gas (H I) Molecular gas $\left(\mathrm{H}_{2}\right)$ Ionized gas (H II) Dust

Explanatory links at NRAO

H I: http://www.cv.nrao.edu/course/astr534/HILine.html
H_{2} : http://www.cv.nrao.edu/course/astr534/MolecularSpectra.html

HI : atomic hydrogen in the interstellar medium

21 cm emission from hyperfine transition: parallel to anti-parallel spins

$$
\nu=\frac{8}{3} g_{I} \frac{m_{e}}{m_{p}} \alpha^{2} R_{m} c=1420.405751 \mathrm{MHz}
$$

The 21 cm line is in the radio at 1420 MHz

The atomic gas of the ISM is often more extended than the stars
NGC 2403
stars

Fraternali, F., Oosterloo, T., Sancisi, R., van Moorsel, G.A. 2001, ApJ, 562, L47

emission coefficient

$$
A_{U L}=\frac{64 \pi^{4}}{3 h c^{3}} \nu^{3}\left|\mu^{*}\right|^{2}
$$

The radiative half-life of this transition is II Myr. This is readily maintained in equilibrium even in a cool (~100 K), diffuse ISM (< I atom/cc)

Counting 21 cm photons is equivalent to counting hydrogen atoms - a direct relation to mass!

$$
M_{H I}=2.36 \times 10^{5} D^{2} F_{H I}
$$

Gives mass in solar masses for D in Mpc and measured flux $F_{H I}$, the flux integral in Jy-km/s

$$
1 \mathrm{Jy}=10^{-26} \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~Hz}^{-1}
$$

Molecular ISM

Cold (~30 K),"dense" (> 100 molecules/cc) phase of the ISM
Very clumpy, with low filling factor - much of the H_{2} mass is in Giant Molecular Clouds $\left(\sim 10^{6} \mathrm{M}_{0}\right)$. This is where stars form.

Diatomic molecules $\left(\mathrm{H}_{2}, \mathrm{~N}_{2}, \mathrm{O}_{2}\right)$ boring or at least hard to excite, as they have no dipole moment.

Polar molecules (esp. CO) have a permanent dipole moment thanks to asymmetry so have a rich rotational spectrum (typically in the mm or cm wavelengths).

$$
M_{H_{2}}=1.1 \times 10^{4} D^{2} F_{C O}
$$

assuming the conversion factor

$$
X_{C O}=2.8 \times 10^{20} \mathrm{~cm}^{-2}(\mathrm{~K} \mathrm{~km} / \mathrm{s})^{-1}
$$

which is calibrated by estimating the virial mass of nearby molecular clouds

Often CO observations are not available, in which case one approach is to use scaling relations: the amount of molecular gas is proportional to the star formation rate and the stellar mass.

McGaugh et al. (2020, RNAAS, 4, 45)

Metallicity Dependence of the Hydrogen Fraction

Typically we measure the mass of hydrogen gas (e.g., $\mathrm{MHI}^{\text {) }}$. This needs to be corrected to account for the presence of helium and metals.
$\mathrm{X}=$ hydrogen fraction (primordial fraction 3/4)
$\mathrm{Y}=$ helium fraction (primordial fraction 1/4)
$\mathrm{Z}=$ everything else

As galaxies evolve, they form stars which make metals. Consequently, the metallicity correlates with stellar mass

$$
X=0.75-38.2\left(\frac{M_{*}}{M_{0}}\right)^{\alpha}
$$

$$
\text { with } \alpha=0.22 \text { and } M_{0}=1.5 \times 10^{24} \mathrm{M}_{\odot}
$$

For a low mass dwarf galaxy, $X^{-1}=1.34$, while for a Milky Way mass galaxy, $X^{-1}=1.41$.

Baryonic Mass of Galaxies

$$
\begin{array}{r}
M_{b}=M_{*}+M_{g}=\Upsilon_{*} L+X^{-1}\left(M_{H I}+M_{H_{2}}\right) \\
X^{-1} \approx 1.33-1.42
\end{array}
$$

- Stars $\quad M_{*}=\Upsilon_{*}^{i} L_{i} \quad L_{i}=4 \pi D^{2} F_{i}$
- Υ_{*}^{i} is the stellar mass-to-light ratio in photometric band i
- Gas
- Atomic gas - H I
- $M_{H I}=2.36 \times 10^{5} D^{2} F_{H I}$
- Molecular gas - H_{2}
- $M_{H_{2}}=1.1 \times 10^{4} D^{2} F_{C O}$
also scales with stellar mass $\quad M_{H_{2}} \approx 0.07 M_{*}$

Dust: the dust itself has negligible mass, but it can affect mass-to-light ratio estimates for stars
Dust-absorbs UV \& optical radiation; re-emits in the IR

