DARK MATTER

ASTR 333/433

TODAY
Stellar Populations Velocity Fields
Galactic Kinematics

Baryonic Mass of Galaxies

$$
\begin{array}{r}
M_{b}=M_{*}+M_{g}=\Upsilon_{*} L+X^{-1}\left(M_{H I}+M_{H_{2}}\right) \\
X^{-1} \approx 1.33-1.42
\end{array}
$$

- Stars $\quad M_{*}=\Upsilon_{*}^{i} L_{i} \quad L_{i}=4 \pi D^{2} F_{i}$
- Υ_{*}^{i} is the stellar mass-to-light ratio in photometric band i

- Gas

- Atomic gas - H I
- $M_{H I}=2.36 \times 10^{5} D^{2} F_{H I}$
- Molecular gas - H_{2}
- $M_{H_{2}}=1.1 \times 10^{4} D^{2} F_{C O}$
also scales with stellar mass $\quad M_{H_{2}} \approx 0.07 M_{*}$

Stellar populations

- Simple Single Population (SSP)
- stars of all masses born at the same time
- e.g., a star cluster a globular cluster
- Complex stellar population (CSP)
- Convolution of many star forming events
- need to know
- IMF (initial mass function)
- Birthrate (star formation rate history)

Stars \& Stellar populations

To separate the dark from the lights, gotta understand stars

The Milky Way has a complex stellar population composed of many generations of stars

- Stellar Evolution
- lives of individual stars
- IMF (Initial Mass Function)
- mass spectrum of stars formed
- Star Formation History
- rate at which stars form
- Metallicity
- distribution of chemical abundances

Galaxy spectra composed of complex stellar populations

In general, one has only the integrated spectra of distant galaxies, not resolved colormagnitude diagrams.

mostly old stars

mostly young stars

Fig. 2.12. Spectra of different types of galaxies from the ultraviolet to the near-infrared. From ellipticals to late-type spirals, the blue continuum and emission lines become systematically stronget. For early-type galaxies, which lack hot, young stars, most of the light emerges at the longest wavelengths, where one sees absorption lines characteristic of cool K stars. In the blue, the spectrum of early-type galaxies show strong H and K absorption lines of calcium and the G band, characteristic of solar type stars. Such galaxies emit little light at wavelengths shorter than $4000 \AA$ and have no emission lines. In contrast, late-type galaxies and starbursts emit most of their light in the blue and near-ultraviolet. This light is produced by hot young stars, which also heat and ionize the interstellar medium giving rise to strong emission lines. [Based on data kindly provided by S. Charlot]

Stellar population models

Stellar population synthesis modeling:

Stellar population synthesis modeling is a common way to estimate the stellar mass-to-light ratio.

Stellar population models

galaxies color coded by Hubble type

Stellar population models

Typically, redder colors mean higher mass-to-light ratios

Can use multiple colors, but most of the information is in the first one.

Baryonic Mass of Galaxies

$$
\begin{array}{r}
M_{b}=M_{*}+M_{g}=\Upsilon_{*} L+X^{-1}\left(M_{H I}+M_{H_{2}}\right) \\
X^{-1} \approx 1.33-1.42
\end{array}
$$

- Stars $\quad M_{*}=\Upsilon_{*}^{i} L_{i} \quad L_{i}=4 \pi D^{2} F_{i}$
- Υ_{*}^{i} is the stellar mass-to-light ratio in photometric band i

To a surprisingly good approximation,

$$
M_{*} \approx 0.5 L_{[3.6]} \quad \approx 0.63 L_{K}
$$

for star forming (late type) galaxies

Stellar orbits in galaxies

M105
Elliptical Galaxy

NGC 628
Spiral Galaxy

Pressure Supported
Eccentric radial orbits Random orientations

Rotationally Supported
Nearly circular orbits Same direction, same plane

Stellar orbits in galaxies

orbital frequency Ω round \& round
epicyclic frequency κ in \& out

M33 velocity field

Rotation curves tilted ring model

NGC 6822 (Weldrake \& de Blok 2003)

21 cm interferometric observations give atomic gas distributions and velocity fields

NGC 6946

 tilted ring model

to which we make tilted ring fits

Rotation curve

The sinusoidal variation of velocity in each ring measures the position angle, inclination, and rotation curve $\mathrm{V}_{\mathrm{c}}(\mathrm{R})$.

$$
V \sin i=V_{s y s}+V_{c} \cos \theta+V_{r} \sin \theta
$$

Galactic Kinematics

Galactic constants

$$
\begin{aligned}
& \qquad R_{0} \Theta_{0} A B \\
& \Omega<\kappa<\nu_{z} \\
& \text { Local Standard of Rest } \\
& \text { Epicycle approximation }
\end{aligned}
$$

$\underline{\text { LSR - local standard of rest }}$

The Local Standard of Rest (LSR) is the point coincident with the sun that is on a perfectly circular orbit. (The sun itself is not on a circular orbit.)

The net velocity of populations of stars is zero wrt the LSR; this is how we measure it.

More generally, if the Galactic potential is not axis-symmetric (e.g., because of the Galactic bar), then the LSR orbit is oval.

Definitions of Galactic Quantities

R_{0} distance to Galactic Center
Θ_{0} orbital velocity of LSR
Ω_{0} angular velocity of LSR

$$
\Omega=\frac{V}{R} \quad P=\frac{2 \pi R}{V}=\frac{2 \pi}{\Omega}
$$

A Oort constant A

$$
A=\frac{1}{2}\left(\frac{V}{R}-\frac{d V}{d R}\right)_{R_{0}}
$$

B Oort constant B

$$
B=-\frac{1}{2}\left(\frac{V}{R}+\frac{d V}{d R}\right)_{R_{0}}
$$

K epicyclic frequency
$\kappa^{2}=-4 B(A-B)$

Frequencies often expressed in Galactic units: km/s/kpc

Solar Motion

The residual solar motion wrt the average of local stars is

$$
\begin{array}{cl}
\text { radial } & U_{\odot}=10 \mathrm{~km} \mathrm{~s}^{-1} \\
\text { azimuthal } & V_{\odot}=12 \mathrm{~km} \mathrm{~s}^{-1}
\end{array} \begin{aligned}
& \text { Some say } \mathrm{V}=5 \mathrm{~km} / \mathrm{s}, \\
& \text { some say } \quad 15 \mathrm{~km} / \mathrm{s}!
\end{aligned}
$$

The Sun is moving

- a bit towards the galactic center
- faster than the LSR
- northward out of the galactic plane

Currently we are near the mid-plane
(Remember this doesn't account for the rotation of the disk!)

Orbits for 4 individual stars

Fic. 2.-Segments of the galactic orbits for two of the program stars. The more circular orbit is for HD 117635 with an ultraviolet excess of $\delta=+0^{*} 05$ The more elliptical orbit is for HD 11980 with $\hat{\delta}=+0^{m} 17$. Both orbits pass through the solar neighborhood, which is designated by a circle on the $l=$ 145° axis at a distance of 10 kpc from the galactic center The galactic center is shown as a cross The outer circle has a radius of 20 kpc .
from Eggen, Lynden-Bell, \& Sandage (1962)

Fig 3.-Same as Fig. 2 The more circular orbit is for HD 29587 with $\delta=+0^{\mathrm{m}} 13$. The more elliptical orbit is for Ross 106 with $\delta=+0^{\mathrm{m}} 26$. The orbit for Ross 106 is retrograde.

