- Today: gravitational lensing
 - discuss Khoury's talk
 - weak lensing
 - strong lensing
 - microlensing

Fake illustration of weak lensing

Real (albeit extreme) weak lensing

Strong lensing: Einstein Cross

ABCD: same QSO seen 4 times

time variable multiple QSO image

lensing galaxy

lensed QSO

Einstein ring

source aligned with lens

Bullet cluster (press release version)

Bullet cluster (Bradac et al. 2009)

X-ray: yellow contours

gravitational (strong+weak) lensing: red contours

Velander et al (2013) weak gravitational lensing

for red galaxies

BIG SCALES

SMALL SCALES

microlensing even observed by OGLE

Microlensing surveys: MACHO EROS OGLE

stare at LMC/SMC to look for micorlensing events due to intervening dark matter. Sensitive to brown dwarfs.

- 203

-211

microlensing surveys of the LMC

microlensing events achromatic

should also be symmetric in time (unless there is a companion planet)

Planet detections by microlensing

achromatic macho candidate event

The observed rate of microlensing events leaves no room for the dark matter halo of the Milky Way to be composed of massive compact objects like brown dwarfs or black holes in the mass range $10^{-7} < M < 10$ solar masses.