Today: cosmology

CMBWIMPs

Tomorrow: **433, MOND** 4/19: **HW due, review**

4/21: **Exam**

CMB temperature fluctuations directly related to density fluctuations

$$\frac{\delta T}{T} = \frac{1}{3} \frac{\delta \rho}{\rho}$$

Fits to the acoustic power spectrum of the CMB strongly constrain cosmic parameters

http://space.mit.edu/home/tegmark/movies.html

Power Spectrum

Example: weather in Cleveland and Santa Barbara More power on long time scales in Cleveland (seasonal variation)

Power Spectrum

Example: weather in Cleveland and Santa Barbara A little more power on short time scales in Santa Barbara (diurnal variation)

A power spectrum is a fourier transform that quantifies the relative variability on different scales CMB power spectra

Multipole /

CMB power spectrum

Planck constraint: $\Omega_m h^3 = 0.0959 \pm 0.0006$

"Cosmologists are often wrong, but never in doubt"

- Lev Landau

Things we know for sure in cosmology:

quantity	c. 1990	WMAP5 2008	Planck 2013
Ω _m	1.00	0.258±0.027	0.315±0.017
Ω_{Λ}	0.00	0.742	0.685
$\Omega_b h^2$	0.0125	0.02273 ±0.00062	0.02205 ±0.00028
H _o	50	71.9±2.7	67.3±1.2
dark matter	CDM	CDM	CDM

The global missing baryon problem

STANDARD MODEL OF ELEMENTARY PARTICLES

Supersymmetry: a hypothetical new symmetry of nature

Every Standard Model particle has a superpartner. The lightest stable massive superparticle is the most favored WIMP candidate. Usually the neutralino (theory dependent).

THE WIMP MIRACLE

 Fermi's constant G_F introduced in 1930s to describe beta decay

 $n \rightarrow p e^- \overline{v}$

• $G_F \approx 1.1 \ 10^5 \text{ GeV}^{-2} \rightarrow \text{ a new}$ mass scale in nature

 $m_{weak} \sim 100 \text{ GeV}$

 We still don't understand the origin of this mass scale, but every attempt so far introduces new particles at the weak scale

11 Dec 09

Feng 3

From review by Feng et al. linked off course review literature page.

THE WIMP MIRACLE

- Assume a new (heavy) particle X is initially in thermal equilibrium
- Its relic density is

• $m_X \sim 100 \text{ GeV}, g_X \sim 0.6 \rightarrow \Omega_X \sim 0.1$

• Remarkable coincidence: particle physics independently predicts particles with the right density to be dark matter

11 Dec 09

Feng 4

From review by Feng et al. linked off course review literature page.

WIMP DETECTION

Correct relic density \rightarrow *Lower* bound on DM-SM interaction

From review by Feng et al. linked off course review literature page.

Feng 5

WIMP DETECTION

Correct relic density \rightarrow *Lower* bound on DM-SM interaction

laboratory experiments

Efficient scattering now (Direct detection)

11 Dec 09

Feng 5

Experimental results to date (early 2016): nada

- LHC: the LHC has discovered the Higgs
 - a necessary ingredienty for SUSY
 - too "normal" for MSSM (minimal SUSY)
 - the LHC has NOT observed excess Bs meson decay
 - the Golden Test for SUSY
 - looking grim for MSSM, SUSY in general

Experimental results to date (early 2016): nada

Indirect detection:

predicted gamma ray sky

Experimental results to date (early 2016): nada gamma ray flux from WIMP self-annihilation scales as the square of the dark matter density.

Galactic Center

sub-halos

