DARK MATTER

 ASTR 333/433
TODAY

Laws of Galactic Rotation

Pattern speed of MW bar is estimated to be

$\Omega_{B} \approx 70(55) \mathrm{km} \mathrm{s}^{-1} \mathrm{kpc}^{-1}$
if corotation is at ~ 3 (4) kpc

3 Laws of Galactic Rotation

I. Rotation curves are approximately flat
$V_{f} \sim$ constant for an indefinite period
2. Mass correlates with rotation velocity

Baryonic Tully-Fisher Relation: $\mathrm{M} \sim \mathrm{V}_{\mathrm{f}}{ }^{4}$
3. The amplitude of the mass discrepancy correlates with the local acceleration

Mass discrepancy-acceleration relation

DISTANCF FROM NUCI FIIS (arcsec)
...and stay flat to the

largest radii probed

Radio data from
Bosma 1981, AJ, 86, 1825

$$
V \sin i=V_{s y s}+V_{c} \cos \theta+V_{r} \sin \theta
$$

THINGS (Walter et al. 2008; de Blok et al. 2008)

Rotation curves extracted using "tilted ring" fits

Fit ellipses that most closely match the circular velocity at a given radius. In principle, get ellipse center, position angle, axis ratio, inclination, and rotation velocity. In practice, usually have to fix some of these parameters.
titled ring model

Cases where rotation

 curves were thought to perhaps be declining have so far turned out to flatten.
de Blok et al. (2008 [THINGS]):
"We do not find steep declines in velocity in the outer rotation curves of NGC 3521, NGC 7793, DDO 154, and NGC 2366. Where declines are observed, they are gentler, and (within the uncertainties in rotation velocity and inclination) consistent with flat rotation curves."

NGC 3198

NGC 3198

Mass models

van Albada et al. (1985)
DISTRIBUTION OF DARK MATTER IN NGC 3198

$V_{\text {tot }}^{2}=V_{\text {disk }}^{2}+V_{\text {halo }}^{2}$

Baryonic models

$$
V_{b}^{2}(r)=V_{b u l g e}^{2}(r)+V_{\text {disk }}^{2}(r)+V_{\text {gas }}^{2}(r)
$$

- Bulge
- not always spherical; sometimes a bar
- Stellar Disk
- exponential a crude approximation
- in practice, solve numerically for the observed surface brightness profile with DISKFIT or ROTMOD (in GIPSY)
- Gas disk
- usually just $\mathrm{HI} ; \mathrm{CO}$ tracks stars

Milky Way structure

Example mass model:

Halo models

pseudo-isothermal

empirically motivated

$$
\rho(r)=\frac{\rho_{0}}{1+\left(r / R_{c}\right)^{2}}
$$

Both models have 2 parameters - a characteristic density and scale radius

NFW

$$
\rho(r)=\frac{\rho_{i}}{\left(r / r_{s}\right)\left[1+\left(r / r_{s}\right)^{2}\right]}
$$

motivated by

$M<M$.
$\mathrm{M} \sim \mathrm{M}$.
$M>M$.

2. Rotation curve amplitude correlates with mass:

Flat rotation curves continue to occur in quite small systems (e.g., Leo P with $V_{f} \sim 15 \mathrm{~km} / \mathrm{s}$)

Tully \& Fisher (1977)
Great for distance scale work. But why does it happen?

Fig. 1. Absolute magnitude-global profile width relation for nearby galaxies with previously well-determined distances. Crosses are M31 and M81, dots are M33 and NGC 2403, filled triangles are smaller systems in the M81 group and open triangles are smaller systems in the M101 group
others from ST I and ST III]; (4) photographic magnitudes (Holmberg, 1958); (5) magnitude corrections due to galactic extinction according to the precepts in ST I [based on Sandage (1973), except that the source for M31 and M33 is McClure and Racine (1969), and for NGC 2403 is Tammann and Sandage (1968)]; (6) magnitude corrections due to galactic absorption as a function of inclination according to the precepts used by Sandage and Tammann (1974d, hereafter ST IV)

Observables

- Luminosity (must calibrate with known D)
- Band pass (BVRIJHK) [slope varies with band]
- Mass - stars, gas, stars+gas
- Rotation Velocity
- line-widths; rotation curves
- $\mathrm{W}_{20}, \mathrm{~W}_{50} ; \mathrm{V}_{\text {flat }}, \mathrm{V}_{2.2}, \mathrm{~V}_{\text {max }}$
- inclination corrections $1 / \sin (i)$
- turbulence/non-circular motions

Luminosity measures

- Band pass
- slope becomes steeper from bluer to redder bands (B | H)
- Worry about internal extinction, especially for blue bands and highly inclined galaxies
- Mass
- Can convert luminosity to stellar mass by estimating the stellar M/L via population modeling.
- IMF biggest systematic uncertainty

What we measure Uncertainties

- Luminosity
- Stellar Mass
- Gas: HI, H2
- Rotation speed
- line-width
- rotation curve
- Distance
- Stellar M*/L
- HI flux, X-factor
- velocity dispersion
- inclination
- asymmetric drift

Rotation curve data from Boomsma et al (2008) [HI] Daigle et al (2006) [Ha] Blais-Ouellette et al (2004)

Mass model built from 2MASS K-band data (SSM)

