Mass models of disc galaxies
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Are discs maximum?
Do haloes have cores or cusps?

Halo-Disc decomposition. Degeneracy and how to constrain it.
Rotation curves best fits
Colour - M/L relation
Dyn : Spiral structure and swing amplification
Dyn : Response simulations of gas flow in discs with spirals or bars
Dyn : Velocity dispersions
Dyn : Bars formation
Dyn : Bar slowdown
Deviations from the TF relationship
Lensing
Our own Galaxy

Cusps versus cores controversy.

The simulation and the observational points of view

How can we get rid of cusps? (Bars, Mergings, ...)

Preventing cusp formation (or getting rid of cusps very early on)



Optical versus HI rotation curves
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Most optical rotation curves can be fitted without any halo.

Extended HI rotation curves can not.

Kalnajs 1983, Kent 1986,87, Athanassoula, Bosma & Papaioanou 1987,
Palunas & Williams 2000



vcir/ (km s_l)

Vosr/ (km s7%)

Halo-Disc decomposition : Degeneracy!
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Ficure 5. Fits of exponential disc and halo to the observed rotation curve (dots) for NGC 3198 (see van Albada
et al. 1985). Disc models with maximum mass (upper left) and also with masses 0.75, 0.50 and 0.25 times the
maximum mass are shown. Constraints on the amount of luminous matter discussed in §3 indicate that the
halo contribution in the lower two panels is too large.

NGC 3198 Van Albada & Sancisi 1986



. Rotation curves and swing amplification

Athanassoula, Bosma & Papaioannou 1987 = ABP

NGU 3198

Disc stability theory:

MH/MD limits the number of arms a spiral
can have (Toomre 1981). Therefore, simply
by counting the number of arms, one can
set limits on MH/MD
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Advantages

-give good fits to the data

-consistent with the number of arms
observed (e.g. m=4 in the outer parts)
-predict the right radial extent for the spirals gas
-result in reasonable gas fractions, M/L, etc
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But: Are all spirals due to swing amplification? Radius (kpe)



Gas flows in discs with non-axisymmetric components

Spirals : Kranz, Slyz, Rix 01, 03 (NGC 3810, 3893, 4254, 5676, 6643)

Bars : Lindblad, Lindblad, Athanassoula 96 and Zanmar-Sanchez et al.
08 (NGC 1365); Weiner, Sellwood, Williams 01 (NGC 4123): Weiner 04
(NGC 3095): Perez, Fux, Freeman 04 (IC 5186)

Different hydro codes
Different ways of calculating the potential from the photometry
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Haloes necessary for disc stability 7777

Ostriker & Peebles (1973):

Cold disks cannot 'survive': they
are prone to a bar instability

If a spherical halo is added, the
model is more stable

For our Galaxy this implies a halo
mass interior to the disk which
is about equal to the disk mass

Thus the halo mass exterior to the
disk may be extremely large

(this was based on simulations with
500 mass points, as well as
some analytic calculations)

t=0 t =0.25 t =0.50

t = 3.00 t=4.00 t=5.00

Fig. 9. Evolution of a disk of stars with an initially exponential mass distribution.

Hohl (1971)




Haloes should be adequately modelled

Live halo Rigid halo

Halo can not receive
angular momentum

Halo can receive
angular momentum

Strong bar develops No bar develops
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The slowing-down of the bar due the halo (1)
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Corotation radius RcR: the radius at
which a star on a circular orbit
will corotate with the bar
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on galaxies (Corsini 2008)
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Shape of dust lanes from gas flow
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The braking of the bar by the halo

Debattista and Sellwood (1998, 2000)




Evolution

Athanassoula 2002, 2003

Rcr and aB (and their ratio) depend on:

- the amount of halo and disc material that can emit/absorb
angular momentum (i.e. the halo density).

- how hot/cold this material (disc/halo) is (i.e. the halo and
disc DF)

- what the shape of the halo is, or was (spherical or triaxial)

- whether there is (or was) gas in the disc

- whether the bar was generated by an interaction
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Vertical motions
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Figure 7.10: Contribution of the disk to the observed maximum rotation for oy /op = 0.6. (a) —

as a function of maximum rotational velocity (circles). The black dashed lines bracket the range for
maximal disks (Sackett 1997). (b) — as function of face-on central surface brightness. In both panels
several galaxies are highlighted, and the triangles indicate the outliers in Fig. 7.9, ESO 487-G02 and
ESO 564-G27. The gray lines show the prediction of the collapse model (Dalcanton et al. 1997); dashed
lines connect models of the same total mass (log o Mioe) = 10-13 1n steps of 0.5) and dotted lines
connect models of with same spin parameter (logarithmically spaced, separated by factors of 0.2 dex,
with the solid line at A = 0.06). The arrows indicate the direction of increasing Mo and A.
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Kregel et al (2003)
Hermann & Ciardullo 2009
O'Brien et al. (2010)
Bershady et al. 2010;
Westfall et al. 2009

zo and the vertical light distribution
can be obtained for galaxies
observed edge-on

The dispersion of the z velocity

component can be obtained for galaxies
observed face-on

Barred galaxies seen edge-on?



og(V,, [km s7'])

TF residuals

1111

|
O =
T
|
o

V7(R) = 4nGZo Ry, V2 [1o(»)Ko(y) — 1, (»)K,(y)]

dlogV,,/0logR,, = —0.5

Courteau & Rix, 1999
Gnedin et al, 2007

250
200
[ |
0]
~. 150
€
vy
—_
>|_|
100
50
0
1 L R RAL m— 1 I e R R AL]
. e .
08— - — 08 - . . -
= 0.6 Z 06 -
0.4 ) 0.4
S ] oL ]
0.2 Ll [ ool 0z L di ool ol
10° 10° 10 10° 10° 101
L. (M, kpc®) L. (M, kpc®)

Fic. 10.—Contribution of stars to the circular velocity at 2.2R; vs. stellar surface density. Filled circles are the data, using the SED-based estimates of the stellar
mass; triangles are a realization of our best-fit model with iy x ¥, including the AC effect. Lefi: Kroupa IMF; right: light IMF.



Our Galaxy : microlensing and gas dynamics
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Microlensing towards LMC/SMC :
- no evidence for much baryonic DM

Microlensing towards bulge :

- not much room for NFW-like profile

Model with bar angle 20°

All sources @ |1=2.68°
. Clump sources @ 1=3.9°
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Figure 17. Microlensing optical depth of our reference model at the
longitudes of the newly published MACHO results, plotted as function of
galactic latitude. The observations are indicated in the figure. The upper
curve shows the optical depth for clump giant sources, the lower curve for
all sources. Both curves are for the galactic longitude of the published

observations for the respective group of sources.

Bissantz & Gerhard (2002)
Bissantz et al. (2003)
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Cusp versus core controversy

DM only, VERY high resolution cosmological simulations

Navarro, Frenk, White 1996, Navarro et al 2004, 2010




Observations of dwarf and LSB galaxies

Graham et al. 2006 T

De Blok et al 2003
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Figure 3.  Inner mass-density slope o versus resolution vy, of the
L5B rotation curves, Svinbols with error bars are observational data,
Circles: de Blok et al, (2000a): squares: de Blok & Bosma (2002} open
stars: Swaters et al. (2005}, The large ssterisks near o ~ =1, vy ~ 0
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THINGS survey, Oh et al. 2008
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Blais-Ouellette et al. 2001
Oh et al. 2008
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M33

Corbelli 2003
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Back to degeneracy!

Rogstad et al. 1974




Infall of heavy baryonic clumps

El-Zant, Shlosman, Hoffman 01
Ma & Boylan-Kolchin 04

Nipoti et al 04

Arena & Bertin 07

Jadrel & Sellwood 09

Clumps are can be described as baryonic bullets (heavy mass particles)

- not tidally disrupted

- have no internal physical processes (no SF, feedback etc)

- small enough so as not to collide

- are largely baryonic (very small DM/baryon mass ratio)

- must be massive to have some effect on the density profile and to reach
the centre in a sufficiently short time (> 1% of the halo mass). How can
so massive clumps be baryonic? If satellite, i.e. baryons + DM, the DM
from the cusp is simply replaced by the DM from the satellite. So no
change in density profile



Decrease of the halo central density due to a bar (1)
Weinberg and Katz 2002, 2005

Near-resonant material in the inner halo takes angular momentum from
the bar and moves to larger radii
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and Katz 2005 Also Colin, Valenzuela, Klypin 06



Decrease of the halo central density due to a bar (2)

Dynamically sound ... but ...

1) Bar formation and evolution concentrates the disc
material inwards. This will pull the halo inwards. How
much depends on the bar strength

2) inner part of the halo emits angular momentum in disc
geometry, but absorbs it in halo geometry. So a dark disc
will emit, not absorb (Athanassoula 2002)

The outcome depends on the balancing of these
counter-acting effects and therefore on many parameters
of the halo and disc DF



Dark matter cores due to supernova-driven outflows

Binney, Gerhard & Silk 2002, Mashchenko, Couchman & Wadsley 2006, 2008

Winds from SN removing selectively low angular momentum material
Governato, Brook, Mayer et al 2010, Mashchenko et al 2008,

Navarro, Eke, Frenk 1996

High resolution LCDM cosmological simulation of a dwarf galaxy with

'resolved' ISM

Feedback drives large-scale, bulk motions of the gas, leading to
substantial potential fluctuations and a sizeable

decrease of the central density
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Stellar feedback in high redshift galaxies

This could solve the core-cusp controversy in dwarfs, but not in MW size
galaxies (e.g. MacLow & Ferrara 1999, Gnedin & Zhao 2002 etc)

But when these dwarfs merge, they will form merger remnants also

with a core
(Merger remnants radial density profiles: Saitoh & Wada 2003, Dehnen 2005,
Kazantzidis et al 2006, McMillan, Athanassoula & Dehnen 2007, etc ..)

Dwarfs with a core are more easy to disrupt than dwarfs with a cusp. So
this may solve also the problem of over-abundance of satellite in MW type
galaxies

LCDM would be in good agreement with observations at all scales



Conclusions

Are discs maximum?
No definite answer.

Maximum discs are not in good agreement with NFW-like
profiles

Cusps or cores?

DM-only , very high resolution simulations argue for
NFW-like profiles (cusps)

Observations argue mainly for cores

Feedback from the baryons around z~1 may flatten the
cusps in dwarf galaxies. Then mergings would produce
large spirals with cores. This could perhaps also solve the
problem of satellite over-abundance
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Colour - M/L relation
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Kassin et al (2006a, 2006b)

Colour - M/L relation by Bell
& de Jong (2001) from
spectrophotometric

evolution models. They give
an upper limit to the baryonic
mass.

Halo fits by NFW are poor
and worse if adiabatic
compression is included
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