DARK MATTER

ASTR 333/433

TODAY

WIMPS WIMP DETECTION

ASTR 433 Projects 4/17: distribute abstracts 4/19: 20 minute talks

4/24: Homework 4 due 4/26: Exam

STANDARD MODEL OF ELEMENTARY PARTICLES

Supersymmetry: a hypothetical new symmetry of nature

Every Standard Model particle has a superpartner. The lightest stable massive superparticle is the most favored WIMP candidate. Usually the neutralino (theory dependent).

THE WIMP MIRACLE

 Fermi's constant G_F introduced in 1930s to describe beta decay

 $n \rightarrow p e^- \overline{v}$

G_F ≈ 1.1 10⁵ GeV⁻² → a new mass scale in nature

m_{weak} ~ 100 GeV

 We still don't understand the origin of this mass scale, but every attempt so far introduces new particles at the weak scale

11 Dec 09

Feng 3

THE WIMP MIRACLE

https://www.youtube.com/watch?v=7lbX7VxlrJQ

- Assume a new (heavy) particle X is initially in thermal equilibrium
- Its relic density is

 $m_{\chi} \sim 100 \text{ GeV}, g_{\chi} \sim 0.6 \rightarrow \Omega_{\chi} \sim 0.1$

 Remarkable coincidence: particle physics independently predicts particles with the right density to be dark matter

11 Dec 09

Feng 4

WIMP DETECTION

Correct relic density → Lower bound on DM-SM interaction

laboratory experiments

Experimental results to date (early 2018): nada

Particle production

the LHC has discovered the Higgs

- a necessary ingredient for SUSY
- too "normal" for MSSM (minimal SUSY)
- the LHC has NOT observed excess Bs meson decay
 - the Golden Test for SUSY
 - looking grim for MSSM, SUSY in general

WIMPs created in the LHC would escape like a neutrino; would be noticed by nonconservation of mass-energy

Experimental results to date (early 2018): nada Indirect detection predicted gamma ray sky

Experimental results to date (early 2018): nada gamma ray flux from WIMP self-annihilation scales as the square of the dark matter density.

Galactic Center

sub-halos

simulated gamma ray sky

Working out the expected gamma ray flux

Strigari (2018) Reviews of Modern Physics, 81, e6901

averaged annihilation cross-section

$$\langle \sigma v \rangle = \int d^3 v P(v) \sigma(v)$$

ſ

 σ here is the interaction cross-section (not velocity dispersion) σ often assumed to be velocity independent, but doesn't have to be. Probability of a dark matter particle having velocity v

distribution function

$$P(v) = \frac{f_{DM}(x, v)}{\rho_{DM}(x)}$$

dark matter density

"J factor"
$$J = \int d\Omega \int d\ell [\rho_{DM}(r(\ell, \Omega))]^2$$

If the interaction cross-section is not velocity-dependent, then the flux depends only on the DM density profile.

INDIRECT DETECTION

cosmic rays as DM decay products

Solid lines are the predicted spectra from GALPROP (Moskalenko, Strong)

11 Dec 09

One must exclude astrophysical sources before claiming a detection of dark matter.

Feng

10

ARE THESE DARK MATTER?

Pulsars can explain PAMELA

Zhang, Cheng (2001); Hooper, Blasi, Serpico (2008) Yuksel, Kistler, Stanev (2008) Profumo (2008); Fermi (2009)

 For dark matter, there is both good and bad news

Good: the WIMP miracle motivates excesses at ~100 GeV – TeV

Bad: the WIMP miracle also tells us that the annihilation cross section should be a factor of 100-1000 too small to explain these excesses. Need enhancement from

- astrophysics (very unlikely)
- particle physics

11 Dec 09

Feng 11

Experimental results to date (early 2016): nada **Direct detection**

Many, *many* experiments CDMS, LUX, XENON, DAMA, PandaX, etc.

Basic idea: WIMP passing through detector interacts via weak force; scatters off nucleus. Detect deposited energy of recoil. (analogous to neutrino detection).

Experimental results to date (early 2018): nada

Direct detection:

Must protect experiments from cosmic rays, natural radioactivity, selfradioactivity, etc., etc.

Bury them deep in mines.

UV scintillation photons (~175 nm)

WIMPs are hiding

WIMP detection experiments

Experimental results to date (early 2018): nada

LHC: the LHC sees no indication of dark matter or even supersymmetry

Direct Detection: Nothing so far well, DAMA

Indirect Detection: Various claims gamma ray excess near Galactic Center cosmic ray excess unidentified X-ray lines

As yet: nothing credible.

