DARK MATTER

ASTR 333/433

TODAY BIG BANG NUCLEOSYNTHESIS

welcome to the shy new world 24 March 2020

ACDM Cosmology

- non-baryonic cold dark matter
 whatever it is (e.g., WIMPs)
- dark energy
 whatever that even means
- dark baryons
 - 29% not accounted for

We have direct knowledge of only 4% of the total mass-energy density of the universe

Basic parameters of cosmology

STANDARD MODEL OF ELEMENTARY PARTICLES

Primordial Nucleosynthesis (BBN):

Gamow

When the universe is just a few minutes old, the Temperature and Density are just right for it to be one Big Nuclear Furnace:

The light elements Hydrogen, Helium, and Lithium are made at this time.

Big Bang theory prediction: 75% H, 25% He (by mass)

Matches observations of nearly primordial gases

BBN products:

- 3/4 Hydrogen
- 1/4 Helium
- Traces of
 - deuterium
 - tritium
 - helium 3
 - lithium

berylium

Abundances depend on the density of matter. The higher the density parameter (Ω_b), the more helium.

1 H Hydrogen	Made in Early Universe												2 He Helium					
3 Li Lithium 11 Na Sodium	4 Beryllium 12 Mg Magnesium	Made in Stars										5 B Boron 13 Al	6 C Carbon 14 Si	7 N Nitrogen 15 Phosphorus	8 O Oxygen 16 Sulfur	9 F Fluorine 17 Cl	10 Ne Neon 18 Ar	
19 K Potassium	20 Ca Calcium	21 Sc Scandium	22 Ti Titanium	23 V Vanadium	24 Cr Chromium	25 Mn Manganese	26 Fe Iron	27 Co Cobalt	28 Ni Nickel	29 Cu Copper	30 Zn Zinc	31 Ga Gallium	32 Ge Germanium	33 As Arsenic	34 Se Selenium	35 Br Bromine	36 Kr Krypton	
37 Rb Rubidium	38 Sr Strontium	39 Y Yttrium	40 Zr Zirconium	41 Nb Niobium	42 Mo Molybdenum	43 Tc Technetium	44 Ru Ruthenium	45 Rh Rhodium	46 Pd Palladium	47 Ag Silver	48 Cd Cadmium	49 In Indium	50 Sn Tin	51 Sb Antimony	52 Te Tellurium	53 lodine	54 Xe Xenon	
55 Cs Cesium	56 Ba Barium	71 Lu Lutetium	72 Hf Hafnium	73 Ta Tantalum	W Tungsten	Rhenium	Osmium	Ir Iridium	Platinum	Au Gold	Hg Mercury	TI Thallium	Pb Lead	Bi Bismuth	Polonium	At Astatine	86 Rn Radon	
87 Fr Francium	88 Ra Radium	103 Lr swrencium	104 Rf Rutherfordium	105 Db Dubnium	106 Sg Seaborgium	107 Bh Bohrium	108 Hs Hassium	109 Mt Meitnerium	110 Ds Darmstadtium	111	112	113	114	115	116	117	118	
											Made in the laboratory							
		/		57 La Lanthanum	58 Ce Cerium	59 Pr Praseodymium	60 Nd Neodymium	61 Pm Promethium	62 Sm Samarium	63 Eu Europium	64 Gd Gadolinium	65 Tb Terbium	66 Dy Dysprosium	67 Ho Holmium	68 Er Erbium	69 Tm Thulium	70 Yb Ytterbium	
				89 Ac Actinium	90 Th Thorium	91 Pa Protactinium	92 U Uranium	93 Np Neptunium	94 Pu Plutonium	95 Am Americium	96 Cm Curium	97 Bk Berkelium	98 Cf Californium	99 Es Einsteinium	100 Fm Fermium	101 Md Mendelevium	102 No Nobelium	

BBN restricted to elements

Stars skip over the mass bottleneck via the triple alpha reaction

 $3 \cdot {}^{4}\text{He} \rightarrow \cdot {}^{12}\text{C*}$

BBN reactions

The following stages occur during the first few minutes of the Universe:

Less than 1 second after the Big Bang, the reactions shown at right maintain the neutron:proton ratio in thermal equilibrium. About 1 second after the Big Bang, the temperature is slightly less than the neutron-proton mass difference,	$p + e^{-} \leftrightarrow n + v$			
these weak reactions become slower than the expansion rate of the Universe, and the neutron:proton ratio <i>freezes out</i> at about 1:6.	$n + e^+ \leftrightarrow p + \overline{v}$			
After 1 second, the only reaction that appreciably changes the number of neutrons is neutron decay, shown at right. The half-life of the neutron is 615 seconds. Without further reactions to preserve neutrons within stable nuclei, the Universe would be pure hydrogen.	$n \rightarrow p + e^{-} + \overline{v}$			
The reaction that preserves the neutrons is deuteron formation. The deuteron is the nucleus of deuterium, which is the				
heavy form of hydrogen (H ²). This reaction is exothermic with an energy difference of 2.2 MeV, but since photons are a billion times more numerous than protons, the reaction does not proceed until the temperature of the Universe falls to 1 billion K or $kT = 0.1$ MeV, about 100 seconds after the Big Bang. At this time, the neutron:proton ratio is about 1:7.	$p + n \leftrightarrow d + \gamma$			
	$d + n \longrightarrow H^3 + \gamma$			
Once deuteron formation has occurred, further reactions proceed to make helium nuclei. Both light helium (He ³) and normal helium (He ⁴) are made, along with the radioactive form of hydrogen (H ³). These reactions can be photoreactions	$H^3 + p \longrightarrow He^4 + \gamma$			
as shown here. Because the helium nucleus is 28 MeV more bound than the deuterons, and the temperature has already fallen so far that $kT = 0.1$ MeV, these reactions only go one way.	$d + p \longrightarrow He^3 + \gamma$			
	$He^3 + n \longrightarrow He^4 + \gamma$			
	$d + d \longrightarrow He^3 + n$			
The reactions at right also produce helium and usually go faster since they do not involve the relatively slow process of	$d + d \longrightarrow H^3 + p$			
photon emission.	$H^3 + d \rightarrow He^4 + n$			
	$He^3 + d \longrightarrow He^4 + p$			
The net effect is shown at right. Eventually the temperature gets so low that the electrostatic repulsion of the deuterons causes the reaction to stop. The deuteron:proton ratio when the reactions stop is quite small, and essentially inversely proportional to the total density in protons and neutrons. Almost all the neutrons in the Universe end up in normal helium nuclei. For a neutron:proton ratio of 1:7 at the time of deuteron formation, 25% of the mass ends up in helium.	$d + d \rightarrow He^4 + \gamma$			

Source: Ned Wright: http://www.astro.ucla.edu/~wright/BBNS.html

BBN gets the abundances of deuterium, helium, and lithium right if the mass density is about 4% of the critical density.

