DARK MATTER

ASTR 333/433

TODAY

CUSP-CORE IN DSPHS TOO BIG TO FAIL PLANES OF SATELLITES KITCHEN-SINK MODELS

Wolf et al. (2010)

Velocity dispersion profiles of dwarfs spheroidal galaxies approximately $\sigma_{v_{o}} \, (\rm km/s)$ flat.

Walker et al. (2007)

Walker & Penarrubia (2011) find that dSph galaxies suffer the same cusp-core problem as found in rotating low surface brightness galaxies

$$\rho \sim r^{-\gamma}$$

$$\gamma=0.39$$
 Formax $\gamma=0.05$ Sculpton

$$\begin{bmatrix} 14 \\ 12 \\ 10 \\ 10 \\ 8 \\ 6 \\ 4 \\ - - - NFW Cusp \\ - - - NFW Cusp \\ - - - Rodial (\beta_{oni}=0) \\ - - - Rodial (\beta_{oni}=-0.3) \\ 2 \\ - - - Rodial (\beta_{oni}=-0.5) \\ 0 \\ 100 \\ 100 \\ 1000 \\ 0 \\ 1000 \\ r [pc] \end{bmatrix}$$

Too Big to Fail?

Bullock JS, Boylan-Kolchin M. 2017. Annu. Rev. Astron. Astrophys. 55:343–87

Too Big to Fail happens in the field, too. It can't be a process specific to satellites. Sort of combines the missing satellite and cusp-core problems. Many models can be invoked to suppress galaxy formation in small dark matter halos; is harder to prevent in mid-size halos.

e.g., Reionization models illustrated here are good for explaining the smallest galaxies, but not ~40 km/s halos, which are too big to fail.

The dwarf satellites of Andromeda

Satellite galaxy positions as viewed from Andromeda

Ibata et al. (2013) Nature 493, 62

The chance of the satellite plane of Cen A being both as flattened and as kinematically correlated as observed is < 1% in simulations

(Müller et al. 2018 Science, **359**, 534)

Dwarf satellite galaxies are problematic for CDM in several ways:

- there should be thousands of them rather than dozens (missing satellite problem)
- they have shallow dark matter halo profiles (cusp/core problem)
- Too Big to Fail (related to cusp/core problem)
- they tend to reside in co-orbiting planes

 (do not exhibit the expected isotropy in phase space)
 the phase space distribution could hardly be *more* different observed thin planes in ordered rotation vs.
 predicted isotropic distribution of objects on predominantly radial orbits

Too Big to Fail is basically a restatement of the cusp-core problem, convolved with the missing satellite problem, which itself is a rephrasing of the luminosity function problem (flat rather than steep faint end slope).

Kitchen sink cosmological models

Somerville & Dave 2015 ARA&A, 53, 51

R Somerville RS, Davé R. 2015. Annu. Rev. Astron. Astrophys. 53:51–113

Illustris simulation

now

Halo assembly by mass

Figure 5.5: The evolution of the characteristic [4.5] magnitude of galaxies and their simulated counterparts as a function of redshift. Red triangles represent simulated protocluster galaxies as identified within the Millennium simulation by their *treeRootId*. Overdense galaxies (black squares) are identified in the Henriques et al. (2015) lightcones using the CCPC algorithm, and then fitted to a Schechter function to estimate $m^*(z)$ values at 4.5μ m, as seen in Table 5.2. As a comparison, $m^*(z)$ for the CCPC are plotted as magenta points, along with galaxies in clusters and protoclusters at lower redshifts from the literature (Mancone et al., 2010; Wylezalek et al., 2014). Galaxy stellar population models constructed using EzGal are plotted as comparisons, but we are not assuming that these protoclusters and clusters are a progenitor-descendant matched sample. The mock data has a $m^*(z)$ trend that looks more similar to a constant star formation model (dust extinction of $\tau_V = 1$) shown by a dash-dot red line (Bruzual & Charlot, 2003) up to $z \sim 2$, where it might merge into a passive evolution model born at high redshift ($z_f > 7$). The simulations predict a large stellar mass assembly between 2 < z < 6.6, while these data seem best fit by a massive, old population of galaxies.

