
Chapter 7

Orbits, Integrals, and Chaos

In n space dimensions, some orbits can be formally decomposed inton independent periodic mo-

tions. These are theregular orbits; they may be represented as winding paths on ann-dimensional

torus. On the other hand,irregular or stochastic orbits defy any such representation; in theory such

orbits may wander anywhere permitted by conservation of energy.

7.1 Constants & Integrals of Motion

Constants of motionare functions of phase-space coordinatesand time which are constant along

orbits:

C(r(t);v(t); t) = const: ; (7.1)

wherer(t) andv(t) = dr=dt are a solution to the equations of motion. The functionC(r ;v; t)must be

constant alongeveryorbit, with a value which depends on the orbit. In a phase-space of 2n dimen-

sions there are always 2n independent constants of motion. For example, the 2n initial conditions

(r0;v0) of an orbit are constants of motion; given phase-space coordinates(r ;v) at timet, integrate

the orbit backwards tot = 0 and read off the initial(r0;v0).

Integrals of motion are functions of phase-space coordinates alone which are constant along

orbits:

I(r(t);v(t)) = const: : (7.2)

An integral of motion can’t depend on time; thus all integrals are constants of motion, but not all

constants are integrals. Integrals come in two varieties:isolatingandnon-isolating. Isolating inte-

grals are important because they constrain the shapes of orbits; in a phase-space of 2n dimensions,

an isolating integral defines a hypersurface of 2n� 1 dimensions.Regular orbitsare those which

haveN = n isolating integrals; in such cases each orbit is confined to a hypersurface of 2n�N = n

dimensions.

7.2 Orbits in Spherical Potentials

Consider the motion of a star in a spherically-symmetric potential,Φ =Φ(jr j). The orbit of the star

remains in a plane perpendicular to the angular momentum vector, so it’s natural to adopt a polar
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coordinate system; call the coordinatesR= jr j andφ . The system hasn= 2 degrees of freedom,

so the phase space has 4 dimensions. All orbits in spherical potentials are regular; they have two

isolating integrals.

Theequations of motioncan be derived by starting with the lagrangian,

L(R;φ ; Ṙ; φ̇ ) =
1
2
(Ṙ2+R2φ̇2)�Φ(R) ; (7.3)

whereṘ= dR=dt and φ̇ = dφ=dt. Differentiating with respect tȯR and φ̇ yields the momenta

conjugate toR andφ ,
∂L

∂ Ṙ
= Ṙ= vR ;

∂L

∂ φ̇
= R2φ̇ = Rvφ = J ; (7.4)

herevR andvφ are velocities in the radial and azimuthal directions. The hamiltonian may now be

expressed as a function of the coordinates and conjugate momenta:

H(R;φ ;vR;J) =
1
2
(v2

R+J2=R2)+Φ(R) : (7.5)

Then the equations of motion are

dR
dt

=
∂H
∂vR

= vR ;
dvR

dt
=�

∂H
∂R

=�
dΦ
dR

+
J2

R3 ;

(7.6)
dφ
dt

=
∂H
∂J

=
J
R2 ;

dJ
dt

=�
∂H
∂φ

= 0:

HeredJ=dt = 0 because (7.5) is independent of the conjugate coordinateφ .

The two independent integrals of motion are thus the total energyE, numerically equal to the

value ofH, and the angular momentumJ. These quantities are given by

E =
1
2
(v2

R+v2
φ )+Φ(R) ; J= Rvφ : (7.7)

Each of these integrals defines a hypersurface in phase space, and the orbit is confined to the in-

tersection of these hypersurfaces. This can be visualized by ignoring theφ coordinate and drawing

surfaces of constantE andJ in the three-dimensional space(R;vR;vφ ), as in Fig. 7.1. Surfaces of

constantE are figures of revolution about theR axis, while surfaces of constantJ are hyperbolas in

the (R;vφ ) plane. The intersection of these surfaces is a closed curve, and an orbit travels around

this curve.

For an orbit of a givenJ, the system may be reduced to one degree of freedom by defining the

effective potential,

Ψ(R) = Φ(R)+
J2

2R2 (7.8)

the corresponding equations of motion are then just

dR
dt

= vR ;
dvR

dt
=�

dΨ
dR

: (7.9)

BecauseΨ(R) diverges asR! 0, the star is energetically prohibited from coming too close to the

origin, and shuttles back and forth between turning pointsRmin andRmax.

In addition to its periodic radial motion described by (7.9), a star also executes a periodic az-

imuthal motion as it orbits the center of the potential. If the radial and azimuthal periods are incom-

mensurate, as is usually the case, the resulting orbit never returns to its starting point in phase space;
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Figure 7.1: An orbit in a Hernquist (1993) potential as the intersection of surfaces of constantE and

J. Left: surface of constantE. Middle: surface of constantJ. Right: intersection of these surfaces.

in coordinate space such an orbit is a rosette (BT87, Fig. 3-1). The Keplerian potential is a very

special case in which the radial and azimuthal periods of all bound orbits areequal. The only other

potential in which all orbits are closed is the harmonic potential generated by a uniform sphere; here

the radial period is half the azimuthal one and all bound orbits are ellipses centered on the bottom

of the potential well. Thus in the Keplerian case all stars advance in azimuth by∆φ = 2π between

successive pericenters, while in the harmonic case they advance by∆φ = π . Galaxies typically have

mass distributions intermediate between these extreme cases, so most orbits in spherical galaxies are

rosettes advancing byπ < ∆φ < 2π between pericenters.

This combination of radial and azimuthal motions can be represented as a path on a 2-torus;

that is, on a rectangle made periodic by gluing both opposing pairs of edges together. Associate the

long direction on the torus with the azimuthal direction of the orbit, and the short direction on the

torus with the closed curve (7.9) produces on the(R;vR) plane; the result is known as aninvariant

torus. An orbit winds solenoid-like on the surface of the torus, typically making between one and

two turns through the hole of the torus for each turn made around its circumference. Points on the

surface of the torus may be parameterized by a pair of angles(θ1;θ2); moreover, by stretching the

torus appropriately, the motion of a star can be described by a pair of linear relations:

θ1(t) = θ1(0)+ω1t ; θ2(t) = θ2(0)+ω2t ; (7.10)

where theωi are integrals of motion. Together,(θ1;θ2) and their conjugate angular frequencies

or actions(ω1;ω2) define a coordinate system for the four-dimensional phase space in which the

hamiltonian takes the simplest possible form,

H(θ1;θ2;ω1;ω2) =
1
2
(ω2

1 +ω2
2) ; (7.11)

these coordinates are known asaction-angle variables.

7.3 Orbits in Axisymmetric Potentials

In describing axisymmetric galaxy models it’s natural to use cylindrical coordinates(R;φ ;z), where

R andφ are polar coordinates in the equatorial plane, andz is the coordinate perpendicular to that
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Figure 7.2: Surface of section for five orbits in the logarithmic potential.

plane. In these coordinates, the potential has the formΦ = Φ(R;z). The equations of motion are

identical to (7.6), with additional expressions forzandvz:

dz
dt

= vz ;
dvz

dt
=�

∂Φ
∂z

: (7.12)

Once again, there are two classical integrals of motion:

E =
1
2
(v2

R+v2
φ +v2

z)+Φ(R;z) ; Jz = Rvφ : (7.13)

Just as for spherical potentials, it’s possible to define an effective potential

Ψ(R;z) = Φ(R;z)+
J2

z

2R2 (7.14)

Instead of governing motion along a line as in the spherical case, the effective potential now governs

the star’s motion in themeridional plane, which rotates about thez axis with angular velocityω =

Jz=R2. The radial motion is described by (7.9), while the vertical motion is described by (7.12) with

Φ replaced byΨ.

On the meridional plane, which has coordinates(R;z), the effective potentialΨ has a minimum

at R> 0 andz= 0 and a steep angular momentum barrier asR! 0 (BT87, Fig. 3-2). If only the

energyE constrains the motion of a star on this plane, one might expect a star to travel everywhere

within some closed contour of constantΨ. But in many cases this isnot observed; instead, stars

launched from rest at different points along a contour of constantΨ follow distinct trajectories. This

implies the existence of athird integral besides the classic integrals given by (7.13). No general

expression for a third integral exists.

Thesurface of sectionis a simple and elegant technique for visualizing the non-classical integrals

of an orbit. It is normally only applicable to systems withn= 2 dimensions, but in the axisymmetric

case, we can use a surface of section to analyze orbits in the meridional plane. To construct a
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surface of section for this case, simply follow the orbit and plot the phase-space coordinates(R;Ṙ)

whenever the orbit crosses thez= 0 plane in an upward direction (˙z> 0). Fig. 7.2 presents results

for five different orbits in the axisymmetric logarithmic potential,

Φ(R;z) =
1
2

ln(R2
c+R2+z2=q2) ; (7.15)

whereRc is a core radius andq < 0 is the axial ratio. All of these orbits started from(R;φ ;z) =
(1;0;0) with angular momentumJz = 0:4, and all have the same total energyE. If E andJz were

the only integrals of motion, we would expect each orbit to cross the surface of sectionanywhere

within some energetically permitted region. Instead, each orbit defines a distinct contour on the

(R;Ṙ) plane; these contours are level surfaces of the mysterious third integral.

The existence of a third integral implies that a star’s orbit is a combination ofthreeperiodic

motions: radial, azimuthal, and vertical. Thus the orbit can be represented as a path on an invariant

3-torus, with action-angle variables(θi ;ωi), wherei = 1;2;3.

Some axisymmetric potentials do have orbits which wander everywhere energetically permitted

on the meridional plane. For such orbits, the description in terms of motion on a invariant 3-torus

breaks down. These are examples ofirregular or stochastic orbitsin an axisymmetric potential; they

respect only the two classical integrals,E andJz.

7.4 Orbits in Non-Axisymmetric Potentials

Non-axisymmetric potentials, withΦ = Φ(x;y) or Φ(x;y;z) in Cartesian coordinates

(x;y;z), admit an even richer variety of orbits. The only classical integral of motion in such a

potential is the energy,

E =
1
2
jvj2+Φ(r): (7.16)

Some potentials nonetheless permit other integrals of motion, and in such potentials regular orbits

may be mapped onto invariant tori. But not all regular orbits can be continuously deformed into

one another; consequently, orbits can be grouped into topologically distinctorbit families. Each

regular orbit family will generally require a different set of invariant tori. Some sense of the variety

of possible orbits in non-axisymmetric galaxies is available by examining orbits in separable and

scale-free potentials.

7.4.1 Separable Potentials

In aseparable potentialall orbits are regular and the mapping to the invariant tori can be constructed

analytically; all integrals of motion are known. Separable potentials are rather special, mathemati-

cally speaking, and it’s highly unlikely that real galaxies have such potentials. However, numerical

experiments show that non-axisymmetric galaxy models with finite cores or shallow cusps usually

generate potentials with many key features of separable potentials.

The orbits in a separable potential may be classified into distinctfamilies, each associated with

a set of closed and stable orbits. In two dimensions, for example, there are two types of closed,

stable orbits; one type (i) oscillates back and forth along the major axis, and the other type (ii)

loops around the center. Because these orbits are stable, other orbits which start nearby will remain

nearby at later times. The families associated with types (i) and (ii) are known asbox and loop
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Figure 7.3: Surface of section for five orbits in the logarithmic potential.

orbits, respectively (BT87, Ch. 3.3.1). Fig 7.3 presents a surface of section for orbits in the non-

axisymmetric logarithmic potential

Φ(x;y) =
1
2

ln(R2
c+x2+y2=q2) : (7.17)

(Technically speaking, this isnot a separable potential, but as noted above it shares many features

with separable potentials forRc > 0.) This surface of section was generated by following each orbit

and plotting(x; ẋ) whenever the orbit crossed they= 0 axis withẏ> 0. All five orbits shown have

the same energy; the outer three are box orbits, while the inner two are loops.

In three dimensions, a separable potential permits four distinct orbit families:

1. boxorbits,

2. short-axis tubeorbits,

3. inner long-axis tubeorbits, and

4. outer long-axis tubeorbits.

The short-axis tubes are orbits which loop around the short (minor) axis, while long-axis tubes loop

around the long (major) axis. The two families of long-axis tube orbits arise from different closed

stable orbits and explore different regions of space (BT87, Fig. 3-20). No ‘intermediate-axis tube’

orbits exist since closed orbits looping around the intermediate axis are unstable. In general, triaxial

potentials with cores have orbit families much like those in separable potentials.

7.4.2 Scale-Free Potentials

In scale-free models all properties have either a power-law or a logarithmic dependence on radius.

In particular, scale-free models with density profiles proportional tor�2 have logarithmic potentials
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Figure 7.4: Surface of section for five orbits in the perturbed logarithmic potential.

and flat rotation curves. While real galaxies are not entirely scale-free, such steep power-law density

distributions are reasonable approximations to the central regions of some elliptical galaxies and to

the halos of galaxies in general.

If the density falls asr�2 or faster, then box orbits are replaced by minor orbital families called

boxlets(Gerhard & Binney 1985, Miralda-Escude & Schwarzschild 1989). Each boxlet family is

associated with a closed and stable orbit arising from a resonance between the motions in thex and

y directions.
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7.5 Irregular orbits

Fig. 7.4 presents surfaces of section for orbits in the potential

Φ(x;y) =
1
2

ln(R2
c+x2+y2=q2

�
p

x2+y2(x2
�y2)=Re) ; (7.18)

whereRe is a second scale radius (not to be confused with the effective radius of a de Vaucouleurs

profile!). In the limitRe! ∞ this reduces to (7.17). The top panel shows results forRe= 3:0, while

the lower panel showsRe= 1:5; note the larger chaotic zone in the latter case.

In principle, an irregular orbit can wander everywhere on the phase-space hypersurface of con-

stantE, but in actuality such orbits show a complicated and often fractal-like structure.


