Chapter 7

Orbits, Integrals, and Chaos

In n space dimensions, some orbits can be formally decomposed inttependent periodic mo-
tions. These are theegular orbits; they may be represented as winding paths om-@mensional
torus. On the other handregular or stochastic orbits defy any such representation; in theory such
orbits may wander anywhere permitted by conservation of energy.

7.1 Constants & Integrals of Motion

Constants of motionare functions of phase-space coordinaedtime which are constant along
orbits:
C(r(t),v(t),t) = const, (7.2)

wherer (t) andv(t) = dr /dt are a solution to the equations of motion. The func@dn v,t) must be
constant alongveryorbit, with a value which depends on the orbit. In a phase-space diin2en-
sions there are alwaysi2ndependent constants of motion. For example, thégial conditions
(ro, Vo) of an orbit are constants of motion; given phase-space coordifratesat timet, integrate
the orbit backwards tb= 0 and read off the initiafr o, vo).
Integrals of motion are functions of phase-space coordinates alone which are constant along
orbits:
I(r(t),v(t)) =const. (7.2)

An integral of motion can’t depend on time; thus all integrals are constants of motion, but not all
constants are integrals. Integrals come in two variet&gatingandnon-isolating Isolating inte-

grals are important because they constrain the shapes of orbits; in a phase-spadienaiidions,

an isolating integral defines a hypersurface nf21 dimensions.Regular orbitsare those which
haveN = n isolating integrals; in such cases each orbit is confined to a hypersurfane-dfi 2= n
dimensions.

7.2 Orbits in Spherical Potentials

Consider the motion of a star in a spherically-symmetric potersbiat, ®(|r|). The orbit of the star
remains in a plane perpendicular to the angular momentum vector, so it's natural to adopt a polar
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52 CHAPTER 7. ORBITS, INTEGRALS, AND CHAOS

coordinate system; call the coordinaies= |r| and @. The system has = 2 degrees of freedom,
so the phase space has 4 dimensions. All orbits in spherical potentials are regular; they have two
isolating integrals.

Theequations of motioncan be derived by starting with the lagrangian,

LR OR )= (R +RP) ~ O(R), 73)

whereR = dR/dt and (p = dg/dt. Differentiating with respect tdR and (p yields the momenta

conjugate tdR and g,

oL . oL .

— =R=Ww, —=Rp=Ry=1J; 7.4

IR R 20 ® o (7.4)
herevg andv,, are velocities in the radial and azimuthal directions. The hamiltonian may now be

expressed as a function of the coordinates and conjugate momenta:

1
H(R,@,Vr,J) = 5(v& +J°/R%) + O(R). (7.5)
Then the equations of motion are
dR dH dwk oH do J?
_:—:VR7 —:——:———F—’
dt  dwr dt OR dR R8
(7.6)

dp _oH _J aJ_ _oH _
dt 9 R’ dt  dp

HeredJ/dt = 0 because (7.5) is independent of the conjugate coordinate
The two independent integrals of motion are thus the total enérgymerically equal to the
value ofH, and the angular momentuin These quantities are given by

E:%(v§+vé)+¢'(R), J=Ry,. (7.7)

Each of these integrals defines a hypersurface in phase space, and the orbit is confined to the in-
tersection of these hypersurfaces. This can be visualized by ignoringdberdinate and drawing
surfaces of constar andJ in the three-dimensional spa¢B,vr,Vy), as in Fig. 7.1. Surfaces of
constank are figures of revolution about thRaxis, while surfaces of constahtre hyperbolas in
the (R,vy) plane. The intersection of these surfaces is a closed curve, and an orbit travels around
this curve.

For an orbit of a givend, the system may be reduced to one degree of freedom by defining the
effective potential

JZ
Y(R) = ®(R) + R (7.8)
the corresponding equations of motion are then just
dR dVR dw

Because¥!(R) diverges aRR — 0, the star is energetically prohibited from coming too close to the
origin, and shuttles back and forth between turning pdiag andRmax.

In addition to its periodic radial motion described by (7.9), a star also executes a periodic az-
imuthal motion as it orbits the center of the potential. If the radial and azimuthal periods are incom-
mensurate, as is usually the case, the resulting orbit never returns to its starting point in phase space;
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Figure 7.1: An orbitin a Hernquist (1993) potential as the intersection of surfaces of cdastadt
J. Left: surface of constarii. Middle: surface of constadt Right: intersection of these surfaces.

in coordinate space such an orbit is a rosette (BT87, Fig. 3-1). The Keplerian potential is a very
special case in which the radial and azimuthal periods of all bound orbiexjae¢ The only other
potential in which all orbits are closed is the harmonic potential generated by a uniform sphere; here
the radial period is half the azimuthal one and all bound orbits are ellipses centered on the bottom
of the potential well. Thus in the Keplerian case all stars advance in azimulkpby 2T between
successive pericenters, while in the harmonic case they advarag byrr. Galaxies typically have

mass distributions intermediate between these extreme cases, so most orbits in spherical galaxies are
rosettes advancing by < Ag < 21T between pericenters.

This combination of radial and azimuthal motions can be represented as a path on a 2-torus;
that is, on a rectangle made periodic by gluing both opposing pairs of edges together. Associate the
long direction on the torus with the azimuthal direction of the orbit, and the short direction on the
torus with the closed curve (7.9) produces on {Revgr) plane; the result is known as @mvariant
torus. An orbit winds solenoid-like on the surface of the torus, typically making between one and
two turns through the hole of the torus for each turn made around its circumference. Points on the
surface of the torus may be parameterized by a pair of ari§ies,); moreover, by stretching the
torus appropriately, the motion of a star can be described by a pair of linear relations:

B1(t) = 61(0) + ant,  6a(t) = 62(0) + et (7.10)

where thew are integrals of motion. Togethgi@;,6,) and their conjugate angular frequencies
or actions(wy, ) define a coordinate system for the four-dimensional phase space in which the
hamiltonian takes the simplest possible form,

H(61, 62,001, 07) = %(wf+w§); (7.11)

these coordinates are knownaxion-angle variables

7.3 Orbits in Axisymmetric Potentials

In describing axisymmetric galaxy models it’s natural to use cylindrical coordii®iesz), where
R and @ are polar coordinates in the equatorial plane, argdthe coordinate perpendicular to that
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Figure 7.2: Surface of section for five orbits in the logarithmic potential.

plane. In these coordinates, the potential has the form ®(R,z). The equations of motion are
identical to (7.6), with additional expressions foandv;:

dz dv, 20

< —Z__2-, 7.12
at~ "> @t oz (7.12)
Once again, there are two classical integrals of motion:
1

E:E(vﬁ+V$+v§)+d>(R,z), J =Ryy. (7.13)

Just as for spherical potentials, it's possible to define an effective potential

¥

Y(R 2 :¢(R,z)+ﬁ (7.14)

Instead of governing motion along a line as in the spherical case, the effective potential now governs
the star’s motion in theneridional planewhich rotates about theeaxis with angular velocityo =
J,/R?. The radial motion is described by (7.9), while the vertical motion is described by (7.12) with
@ replaced by.

On the meridional plane, which has coordingfes), the effective potentidl has a minimum
atR > 0 andz = 0 and a steep angular momentum barrieRas 0 (BT87, Fig. 3-2). If only the
energyE constrains the motion of a star on this plane, one might expect a star to travel everywhere
within some closed contour of consta#t But in many cases this isot observed; instead, stars
launched from rest at different points along a contour of con&igefotlow distinct trajectories. This
implies the existence of third integral besides the classic integrals given by (7.13). No general
expression for a third integral exists.

Thesurface of sectiois a simple and elegant technique for visualizing the non-classical integrals
of an orbit. Itis normally only applicable to systems witk- 2 dimensions, but in the axisymmetric
case, we can use a surface of section to analyze orbits in the meridional plane. To construct a
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surface of section for this case, simply follow the orbit and plot the phase-space coordR;ﬁ't)es
whenever the orbit crosses the- 0 plane in an upward directiorz & 0). Fig. 7.2 presents results
for five different orbits in the axisymmetric logarithmic potential,

O(R,2) = %In(R§+ R+2/P), (7.15)

whereR; is a core radius and < 0 is the axial ratio. All of these orbits started frdiR, ¢,z) =

(1,0,0) with angular momentund, = 0.4, and all have the same total enefgy|f E andJ, were

the only integrals of motion, we would expect each orbit to cross the surface of santjermere

within some energetically permitted region. Instead, each orbit defines a distinct contour on the
(R, R) plane; these contours are level surfaces of the mysterious third integral.

The existence of a third integral implies that a star’s orbit is a combinatighreé periodic
motions: radial, azimuthal, and vertical. Thus the orbit can be represented as a path on an invariant
3-torus, with action-angle variablé¢6;, « ), wherei = 1,2, 3.

Some axisymmetric potentials do have orbits which wander everywhere energetically permitted
on the meridional plane. For such orbits, the description in terms of motion on a invariant 3-torus
breaks down. These are exampleBm@gular or stochastic orbitén an axisymmetric potential; they
respect only the two classical integraétsandJ;.

7.4 Orbits in Non-Axisymmetric Potentials

Non-axisymmetric potentials, with® = ®(x,y) or ®(x,y,z) in Cartesian coordinates
(x,¥,2), admit an even richer variety of orbits. The only classical integral of motion in such a
potential is the energy,

E:%|V|2+¢(r). (7.16)

Some potentials nonetheless permit other integrals of motion, and in such potentials regular orbits
may be mapped onto invariant tori. But not all regular orbits can be continuously deformed into
one another; consequently, orbits can be grouped into topologically distipictfamilies Each
regular orbit family will generally require a different set of invariant tori. Some sense of the variety
of possible orbits in non-axisymmetric galaxies is available by examining orbits in separable and
scale-free potentials.

7.4.1 Separable Potentials

In aseparable potentiall orbits are regular and the mapping to the invariant tori can be constructed
analytically; all integrals of motion are known. Separable potentials are rather special, mathemati-
cally speaking, and it's highly unlikely that real galaxies have such potentials. However, numerical
experiments show that non-axisymmetric galaxy models with finite cores or shallow cusps usually
generate potentials with many key features of separable potentials.

The orbits in a separable potential may be classified into didtimeilies each associated with
a set of closed and stable orbits. In two dimensions, for example, there are two types of closed,
stable orbits; one type (i) oscillates back and forth along the major axis, and the other type (ii)
loops around the center. Because these orbits are stable, other orbits which start nearby will remain
nearby at later times. The families associated with types (i) and (ii) are knownxaandloop
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dx /dt
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T

Figure 7.3: Surface of section for five orbits in the logarithmic potential.

orbits, respectively (BT87, Ch. 3.3.1). Fig 7.3 presents a surface of section for orbits in the non-
axisymmetric logarithmic potential

D(x,y) = %In(R§+x2+y2/q2). (7.17)

(Technically speaking, this isota separable potential, but as noted above it shares many features
with separable potentials fé. > 0.) This surface of section was generated by following each orbit
and plotting(x,x) whenever the orbit crossed tlie= 0 axis withy > 0. All five orbits shown have
the same energy; the outer three are box orbits, while the inner two are loops.

In three dimensions, a separable potential permits four distinct orbit families:

1. boxorbits,

2. short-axis tuberbits,

3. inner long-axis tub@rbits, and
4. outer long-axis tuberbits.

The short-axis tubes are orbits which loop around the short (minor) axis, while long-axis tubes loop
around the long (major) axis. The two families of long-axis tube orbits arise from different closed
stable orbits and explore different regions of space (BT87, Fig. 3-20). No ‘intermediate-axis tube’
orbits exist since closed orbits looping around the intermediate axis are unstable. In general, triaxial
potentials with cores have orbit families much like those in separable potentials.

7.4.2 Scale-Free Potentials

In scale-free models all properties have either a power-law or a logarithmic dependence on radius.
In particular, scale-free models with density profiles proportionaffohave logarithmic potentials
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Figure 7.4: Surface of section for five orbits in the perturbed logarithmic potential.

and flat rotation curves. While real galaxies are not entirely scale-free, such steep power-law density
distributions are reasonable approximations to the central regions of some elliptical galaxies and to

the halos of galaxies in general.

If the density falls as 2 or faster, then box orbits are replaced by minor orbital families called
boxlets(Gerhard & Binney 1985, Miralda-Escude & Schwarzschild 1989). Each boxlet family is
associated with a closed and stable orbit arising from a resonance between the motionsaimtthe

y directions.
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7.5 lrregular orbits

Fig. 7.4 presents surfaces of section for orbits in the potential

D(xy) = %In(R§+x2+y2/q2— V202 —y?)/Re), (7.18)

whereRe is a second scale radiusdtto be confused with the effective radius of a de Vaucouleurs
profile!). In the limitRe — oo this reduces to (7.17). The top panel shows result&fes 3.0, while
the lower panel showRe = 1.5; note the larger chaotic zone in the latter case.

In principle, an irregular orbit can wander everywhere on the phase-space hypersurface of con-
stantE, but in actuality such orbits show a complicated and often fractal-like structure.



