#### Introduction to Astronomy ASTR 100 - Fall 2010

- Prof: <u>Stacy McGaugh</u>
  - Lecture Time: TuTh 9:30-10:45 AM
  - Lecture Room: PHYS 1412
- Teaching Assistants: See Section Info
  - Discussion Room: CSS 2400
  - Discussion Times: See <u>Section Info</u>
- Textbook: Cosmic Perspective Fundamentals by Bennett, Donahue, Schneider, & Voit ISBN 978-0-321566955



#### **Class Information**

The first lecture is Tuesday, August 31, 2010.

#### Syllabus

- Course Description
- Lecture Schedule
- Assignments

#### Miscellany

- Open House Schedule and related information for the University Observatory's Open House.
- There are other ASTR courses you can take after this one: <u>ASTR Courses for Non-Majors</u>.

http://www.astro.umd.edu/~ssm/ASTR100/index.html



#### • Syllabus; administrative details

- Some Definitions
- An Idea of Scale



### What is our place in the universe?

#### Our "Cosmic Address"





## Planet

![](_page_5_Picture_1.jpeg)

![](_page_5_Picture_2.jpeg)

A moderately large object that orbits a star; it shines by reflected light. Planets may be rocky, icy, or gaseous in composition.

#### **Dusk, Aug 31** 30 minutes after sunset

![](_page_6_Picture_1.jpeg)

Looking

© 2010 Sky & Telescope

est-Southwest

## Moon (or satellite)

![](_page_7_Picture_1.jpeg)

# An object that orbits a planet.

### Asteroid

A relatively small and rocky object that orbits a star.

![](_page_8_Picture_2.jpeg)

# Comet

![](_page_9_Figure_1.jpeg)

A relatively small and icy object that orbits a star.

Copyright @ Addison Wesley.

# Solar (Star) System

A star and all the material that orbits it, including its planets and moons

![](_page_10_Figure_2.jpeg)

### Nebula

![](_page_11_Picture_1.jpeg)

### An interstellar cloud of gas and/or dust

Typically larger than the solar system - may contain many stars

# Galaxy

### A great island of stars in space, all held together by gravity and orbiting a common center

![](_page_12_Picture_2.jpeg)

100s of billions of stars

## Universe

### The sum total of all matter and energy; that is, everything within and between all galaxies

100s of billions of galaxies... in the observable portion of the universe

![](_page_13_Picture_3.jpeg)

#### Light travel time & distance

• Light travels at a finite speed (300,000 km/s).

| Destination      | Light travel time |
|------------------|-------------------|
| Moon             | 1 second          |
| Sun              | 8 minutes         |
| Sirius           | 8 years           |
| Andromeda Galaxy | 2.5 million years |

• Thus, we see objects as they were in the past:

The farther away we look in distance, the further back we look in time.

#### **Example:**

This photo shows the Andromeda Galaxy as it looked about

2 1/2 million years ago.

Question: When will we be able to see what it looks like now?

![](_page_15_Picture_4.jpeg)

### Definition: Light-Year

- The distance light can travel in one year.
- About 10 trillion kilometers (6 trillion miles). (10<sup>13</sup> km)

$$d = c \times t$$

distance = (speed of light) x (travel time)