The Jovian Planets

The Jovian planets are gas giants much larger than Earth

Sizes of Jovian Planets

(1) 2006 Pearson Education, Inc., publishing as Addison Wesley

- Planets get larger as they get more massive
- up to a point...
- Planets more massive than Jupiter are expected to shrink.
- There comes a point where gravity wins: adding more mass causes contraction.

Jovian Planet Composition

- Jupiter and Saturn
- Mostly H and He gas
- these are the most common elements in the Universe
- "Gas Giants"
- Uranus and Neptune
- Mostly hydrogen compounds: water $\left(\mathrm{H}_{2} \mathrm{O}\right)$, methane $\left(\mathrm{CH}_{4}\right)$, ammonia $\left(\mathrm{NH}_{3}\right)$
- Some H, He, and rock
— "Ice Giants"

Interiors of Jovian Planets

Inside Jupiter

- High pressure inside of Jupiter causes the phase of hydrogen to change with depth.
- Hydrogen acts like a metal at great depths because its electrons move freely.

Inside Jupiter

- The core is thought to be made of rock, metals, and hydrogen compounds.
- The core is about the same size as Earth but 10 times as massive.

Comparing Jovian Interiors

- Models suggest that cores of jovian planets have similar composition.
- Lower pressures inside Uranus and Neptune mean no metallic hydrogen.

Jupiter's Atmosphere

- Hydrogen compounds in Jupiter form clouds.
- Different cloud layers correspond to freezing points of different hydrogen compounds.
- Other jovian planets have similar cloud layers.

Jupiter's Colors

$5,000 \mathrm{~km}$

- Ammonium sulfide clouds $\left(\mathrm{NH}_{4} \mathrm{SH}\right)$ reflect red/brown.
- Ammonia, the highest, coldest layer, reflects white.

Saturn's Colors

- Saturn's layers are similar but are deeper in and farther from the Sun - more subdued.

Methane on Uranus and Neptune

- Methane gas on

Neptune and Uranus absorbs red light but transmits blue light.

- Blue light reflects off methane clouds, making those planets look blue.

Weather on Jovian Planets

- All the jovian planets have strong winds and storms.

The great red spot on Jupiter is a storm larger than Earth that has persisted for centuries.

Jovian planets are

- Big
- massive and cold, they can retain light elements like hydrogen and helium

Jovian planets are

- Big
- massive and cold, they can retain light elements like hydrogen and helium
- their composition is like that of the stars
- the smaller terrestrial planets are the abnormal planets in terms of composition
- Like miniature solar systems
- moons
- rings

The moons of the Jovian planets

Galilean moons of Jupiter ("Medici stars")

Sizes of Moons

- Small moons ($<300 \mathrm{~km}$)
- No geological activity
- Medium-sized moons (300-1,500 km)
- Geological activity in past
- Large moons ($>1,500 \mathrm{~km}$)
- Ongoing geological activity

Jupiter

lo

Europa

Ganymede

Saturn
Mimas Enceladus Tethys Dione Rhea Titan lapetus

Uranus

Miranda

Neptune

Triton

Other objects for comparison

Mercury

Moon

Medium and

Large Moons

- Enough self-gravity to be spherical
- Have substantial amounts of ice - as important as rock to overall composition
- Formed in orbit around jovian planets
- Circular orbits mostly in the same direction as planet rotation

Small Moons

- Far more numerous than the medium and large moons
- Not enough gravity to be spherical:
"potato-shaped"

Some interesting cases:

- Io is the most volcanically active body in the solar system.

Tidal Heating

small tidal bulges

Io is squished and stretched as it orbits Jupiter.

Orbit is elliptical because of orbital resonances with other moons

Orbital Resonances

Every 7 days, these three moons line up.

- Volcanic eruptions continue to change Io's surface.

cold brittle surface ice

Europa

Icy surface

- cracks driven by some "geological" activity
Liquid ocean beneath?
- popular spot to speculate about the potential for life

Ganymede

- Largest moon in the solar system
- Clear evidence of geological activity
- Tidal heating plus heat from radioactive decay?

Saturn's large moon Titan

- Titan is the only moon in the solar system which has a thick atmosphere.
- It consists mostly of nitrogen with some argon, methane, and ethane.

Titan's Surface

- The Huygens probe provided a first look at Titan's surface in early 2005.
- It had liquid methane, "rocks" made of ice.

Neptune's Moon Triton

Triton's southern hemisphere as seen by Voyager 2.

This close-up shows lava-filled impact basins similar to the lunar maria, but the lava was water or slush rather than molten rock.

- Similar to Pluto, but larger
- Evidence for past geological activity
- orbits retrograde
- unique for such a large moon

Saturn's rings

What are Saturn's rings like?

- They are made up of numerous, small, icy particles.
- They orbit over Saturn's equator.
- They are very thin.

Artist's Conception in Ring

Elaborate structure in rings controlled by the gravity of "shepherd" moons

. Newly discovered outer ring

Saturn

Iapetus

Dust Ring

Jovian Ring Systems

- All four jovian planets have ring systems.
- Others have smaller, darker ring particles than does Saturn.
- Rings and moons ubiquitous around Jovian planets
- like small solar systems.

