TODAY

DOPPLER EFFECT & MOTION

EXTRASOLAR PLANETS

TELESCOPES

OUR STAR, THE SUN

NEXT HOMEWORK DUE IN ONE WEEK

Doppler Application

• Extrasolar planets

a Doppler shifts allow us to detect the slight motion of a star caused by an orbiting planet.

Copyright @ 2007 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Gravitational Tugs

• The Sun's motion around the solar system's center of mass depends on tugs from all the planets.

Planets around other stars

More being discovered all the time!

> 360 to date

Some planets detected via the Doppler effect have been confirmed by transit observations:

Copyright @ 2007 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

NASA Kepler mission

Phase variations detected!

Telescopes

- Telescopes collect more light than our eyes ⇒
 light-collecting area
- Telescopes can see more detail than our eyes ⇒
 angular resolution
- Telescopes/instruments can detect light that is invisible to our eyes (e.g., infrared, ultraviolet)

Bigger is better

1. Larger light-collecting area

can see fainter things

2. Better angular resolution

can see smaller things

Bigger is better

For a telescope with mirror of diameter D,

can see fainter: $b^{-1} \propto D^2$

with higher resolution:

 $heta \propto rac{\lambda}{D}$

Basic Telescope Design

• Refracting: lenses

Yerkes 1-m refractor

Basic Telescope Design

- Reflecting: mirrors
- Most research telescopes today are reflecting

Gemini North 8-m

Different designs for different wavelengths of light

Radio telescope (Arecibo, Puerto Rico) Longer wavelengths need larger "mirrors"

Interferometry

• This technique allows two or more small telescopes to work together to obtain the *angular resolution* of a larger telescope.

Very Large Array (VLA), New Mexico

Very Large Array (VLA), New Mexico

angular resolution of a telescope this size

X-ray telescope: "grazing incidence" optics

Mirror elements are 0.8 m long and from 0.6 m to 1.2 m in diameter.

b

Advantages of telescopes in space

Hubble

Chandra

Observing problems due to Earth's atmosphere

1. Light Pollution

2. Atmospheric Turbulence causes *twinkling* \Rightarrow blurs images (called "seeing" by astronomers).

Star viewed with ground-based telescope

View from Hubble Space Telescope

3. Atmosphere absorbs most of EM spectrum, including all UV and X ray and most infrared.

Kepler

Telescopes in space solve all 3 problems.

Chandra X-ray Observatory

Instruments

• Cameras

Instruments

• Spectrographs

Radius: 6.9 × 10⁸ m (109 times Earth)

Mass: 2 × 10³⁰ kg (1,000 Jupiters; 300,000 Earths)

Luminosity: 3.8×10^{26} watts

That's about a billion big nuclear bombs every second

Why does the Sun shine?

Is it on FIRE? ... NO! ... not enough energy, not enough oxygen

Chemical Energy Content

Luminosity

~ 10,000 years

Is it CONTRACTING? ... NO!

Gravitational Potential Energy

Luminosity

 ~ 25 million years

It is powered by NUCLEAR ENERGY!

Nuclear Potential Energy

Luminosity

 ~ 10 billion years

Stars are stable: pressure balances gravity.

Hydrostatic equilibrium:

Energy released by nuclear fusion in the core of the sun heats the surrounding gas. The resultant pressure balances the relentless crush of gravity.