TODAY

- STARS
- DISTANCES
- SPECTRAL TYPES
- THE HR DIAGRAM

Energy transport

- Energy generated by fusion deep in the core
- Energy transported outwards through sun by - radiation (photons), or
- convection (churning gas motion)
- Energy radiated from surface into space as light

Luminosity: L

Amount of power a star radiates
(energy per second = watts)

Apparent brightness: b
Amount of starlight that reaches Earth
(energy per second per square meter)

Luminosity passing through each sphere is the same

Area of sphere:

4π (radius) 2

Divide luminosity by area to get brightness.

The relationship between apparent brightness and luminosity depends on distance:

$$
\text { Brightness }=\frac{\text { Luminosity }}{4 \pi(\text { distance })^{2}}
$$

So how far away are the stars?

Start with a crude guess: all stars are like the sun with the same luminosity:

$$
d=\sqrt{\frac{L}{4 \pi b}}
$$

With this crude approximation, the brighter stars in the sky would be about a light-year away.

Parallax and Distance

$$
d=\frac{s}{p}
$$

The natural units for the parallax angle p are radians. Then distance d and separation s are in the same units.

For the special case of $s=1 \mathrm{AU}$ and p measured in arcseconds, d comes out in parsecs (pc).

$$
1 \mathrm{pc}=3.26 \text { light-years }
$$

The closest star (Proxima Centauri) is 4.2 light-years away, so $p<1$ "

- no wonder the Ancients couldn't detect parallax!

Most luminous
stars:

Hottest stars:

$$
10^{6} L_{\text {Sun }}
$$

Least luminous stars:

$$
10^{-4} L_{\mathrm{Sun}}
$$

(Sun's surface is $5,800 \mathrm{~K}$)

50,000 K

Coolest stars:

$$
3,000 \mathrm{~K}
$$
 $3,000 \mathrm{~K}$

($L_{\text {Sun }}$ is luminosity of the Sun)

Properties of Thermal Radiation

1. Hotter objects emit more light per unit area at all frequencies.
2. Hotter objects emit photons with a higher average energy.

Lines in a star's spectrum correspond to a spectral type that reveals its temperature:
(Hottest) O B A F G K M (Coolest)

Remembering Spectral Types

(Hottest) O B A F G K M (Coolest)

- Oh, Be A Fine Girl/Guy, Kiss Me
- Only Boys Accepting Feminism Get Kissed Meaningfully
- Oh Boy, An F Grade Kills Me

Pioneers of Stellar Classification

- Annie Jump

Cannon and the "calculators" at Harvard laid the foundation of modern stellar classification.

Spectral Types

are a sequence in Temperature

O B A F G K M

The Sun is type G2

Hertzsprung-Russell (HR) Diagram

- Plots Luminosity vs Temperature
- Luminosity requires measurement of
- brightness
- distance
- Temperature from
- Wien's Law (color) or
- Spectral Type

Most stars fall somewhere on the main
sequence of the H -R diagram.

Hot stars tend to be brighter. Remember the Stefan-Boltzmann Law:
$L \propto R^{2} T^{4}$

Stars with lower T and higher L than mainsequence stars must have larger radii:

giants and supergiants

Stars with higher T and lower L than main-sequence stars must have smaller radii:

white dwarfs

A star's full classification includes spectral type (OBAFGKM) and luminosity class (related to the size of the star - bigger is brighter):

I - supergiant
II - bright giant
III - giant
IV - subgiant
V - main sequence
Examples: Sun - G2 V
Sirius - A1 V
Proxima Centauri - M5.5 V
Betelgeuse - M2 I

Main-sequence stars are fusing hydrogen into helium in their cores, like the Sun.

Luminous mainsequence stars are hot (blue).

Less luminous ones are cooler (yellow or red).

Mass measurements of main-sequence stars show that the hot, blue stars are much more massive than the cool, red ones.

The mass of a main sequence star determines its luminosity and spectral type!

For stars, mass is destiny

Stellar Properties Review

Luminosity: from brightness and distance

$$
\left(0.08 M_{\text {Sun }}\right) \quad 10^{-4} L_{\text {Sun }}-10^{6} L_{\text {Sun }} \quad\left(100 M_{\text {Sun }}\right)
$$

Temperature: from color and spectral type

$$
\left(0.08 M_{\text {Sun }}\right)^{3,000 \mathrm{~K}-50,000 \mathrm{~K} \quad\left(100 M_{\text {Sun }}\right)}
$$

Mass: from period (P) and average separation (a) of binary-star orbit

$$
0.08 M_{\mathrm{Sun}}-100 M_{\mathrm{Sun}}
$$

The lowest mass star

- main sequence stars are "hydrogen burning"
- 0.08 solar masses
- lowest mass star
- not arbitrary:
- This is the limit for hydrogen fusion
- objects with less mass can not ignite fusion
- such sub-stellar objects are called "brown dwarfs"

How do we measure stellar masses?

© 2006 Pearson Education, Inc., publishing as Addison Wesley
with binary stars!

Types of Binary Star Systems

- Visual binary - can see individual stars orbit one another
- Eclipsing binary - see individual stars eclipse one another
- Spectroscopic binary - see two spectral types

About half of all stars are in binary systems.

Spectroscopic Binary

Star B spectrum at time 1: approaching, therefore blueshifted

$\stackrel{1}{\text { approaching us }}$

Star B spectrum at time 2: receding, therefore redshifted

We determine the orbit by measuring Doppler shifts.

Direct mass measurements are possible for stars in binary star systems using Netwon's generalization of Kepler's third law:

$$
\begin{aligned}
& P^{2}=\frac{4 \pi^{2}}{G\left(M_{1}+M_{2}\right)} a^{3} \\
& P=\text { period } \\
& a=\text { separation }
\end{aligned}
$$

Need two out of three observables to measure mass:

1. Orbital period (P)
2. Orbital separation (a or $r=$ radius)
3. Orbital velocity (v)

For circular orbits, $v=2 \pi r / p$

