TODAY

STARS

STELLAR LIFETIMES

LIFE CYCLES OF STARS

STAR CLUSTERS

EXAM II NEXT TIME

Nuclear fusion in stars

<u>IN</u> 4 protons *OUT* ⁴He nucleus 2 gamma rays 2 positrons 2 neutrinos $E = mc^2 :$

Total mass is 0.7% *lower.* In addition to the proton-proton chain (see previous lecture):

CNO Cycle

- High-mass mainsequence stars fuse H to He at a higher rate using carbon, nitrogen, and oxygen as catalysts.
- Net result the same: 4 protons in; one helium nucleus out.

Fusing ¹H into ⁴He

• Proton-proton chain

– more effective in low mass stars (lower T)

 $M < 1.5 M_{sun}$

• CNO cycle

- more effective in high mass stars (higher T) $\Lambda I > 1 = \Lambda I$

 $M > 1.5 M_{sun}$

Sun is about 90% proton-proton; 10% CNO cycle.

Main Sequence Stars

- Obey scaling relations
- Mass-Radius relation

 more massive stars are bigger
- Mass-Luminosity relation
 - more massive stars are brighter

Main-sequence stars (to scale)

Mass-Luminosity Relation

which dividual maa found

Mass-Luminosity Relation $L \propto M^4$

- more massive stars **much** brighter
- use their fuel **much** faster
 - Mass: fuel supply $(E = mc^2)$
 - Luminosity: rate of fuel usage

Mass is finite - the stars don't shine forever!

Mass and Lifetime

$$lifetime \propto \frac{energy(mc^2)}{power(L)}$$

$$t \propto \frac{M}{L}$$
 fuel rate of fuel use

Mass and Lifetime:

 $t \propto \frac{M}{L}$

Mass-Luminosity Relation: $L \propto M^4$

$$t \propto \frac{M}{L} \propto \frac{M}{M^4} \propto M^{-3}$$

So as mass increases, the main sequence lifetime decreases.

Mass and Lifetime Until core hydrogen

(10% of total) is used up

Sun's life expectancy: 10 billion years

Life expectancy of a 10 M_{Sun} star:

10 times as much fuel, but uses it 10,000 times faster

 $lifetime \propto \frac{energy(mc^2)}{power(L)}$

lifetime $(10 M_{sun}) \approx \left(\frac{10 M_{sun}}{10^4 L_{sun}}\right) 10$ billion years ≈ 10 million years

For Main-Sequence Stars: High-mass: High luminosity Short-lived Large radius Blue Low-mass: Low luminosity Long-lived Small radius Red

Hydrostatic Equilibrium

Pressure and gravity in balance

Stars attempt to maintain equilibrium by striking a balance between the gravity of their enormous mass and the pressure produced by the energy of fusion reactions.

A main sequence star is in equilibrium as Hydrogen burning supports it against gravitational collapse.

What happens as the hydrogen runs out?

in

Copyright © 2005 Pearson Prentice Hall, Inc.

Off the Main Sequence

- Stellar properties depend on both mass and age: those that have finished fusing H to He in their cores are no longer on the main sequence.
- All stars become larger and redder after exhausting their core hydrogen: giants and supergiants.
- Most stars end up small and dim after fusion has ceased: white dwarfs.

Main-sequence stars (to scale)

Giants, supergiants, white dwarfs

Much of this learned from studying Star Clusters

Physically associated groups of stars All the same age, the same distance away

Open cluster

Globular cluster

Open cluster: A few thousand loosely packed stars

Globular cluster: Millions of stars in a dense ball bound together by gravity

Measuring the age of a star cluster

© 2007 Pearson Education Inc., publishing as Pearson Addison-Wesley

Pleiades now has no stars with life expectancy less than around 100 million years.

The mainsequence turnoff point of a cluster tells us its age.

Detailed modeling of the oldest globular clusters reveals that they are about 13 billion years old.

The life stages of a low-mass star

Life Track After Main Sequence

- Observations of star clusters show that a star becomes larger, redder, and more luminous after its time on the main sequence is over.
- At the end of their main sequence life time - when hydrogen in the core is exhausted - stars ascend the **red giant branch**.

After hydrogen fuel is spent

- Without further fusion, the core contracts. H begins fusing to He in a shell around the core.
- As the core contracts, temperature increases, nuclear reaction rates increase (in the shell), and the Luminosity increases.