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@ STARS

® EVOLUTION OF Low AND HIGH
MASS STARS

NUCLEOSYNTHESIS

SUPERNOVAE - THE EXPLOSIVE
DEATHS OF MASSIVE STARS




The life stages of a low-mass star




Life Track After Main Sequence

* (Observations of star
clusters show that a
star becomes larger,
redder, and more
luminous after 1ts
time on the main
sequence 1S over.

At the end of their
main sequence life
time - when
hydrogen 1n the core
1s exhausted - stars

ascend the red giant
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After hydrogen fuel 1s spent

* Without further fusion,
the core contracts. H
main- sequence st begins fusing to He in

. a shell around the core.
main sequence star

* As the core contracts,
temperature increases,
nuclear reaction rates
increase (1n the shell),
and the Luminosity
Increases.

star expanding
into red giant

red giant




Helium Flash

 The core continues to shrink and heat as the rest of
the star expands and becomes more luminous.

— Ascends giant branch for a billion years

« At a critical temperature and density, helium
fusion suddenly begins.

— The Helium Flash

* The star evolves rapidly, finding a new
equilibrium with He burning in core and H
burning in a shell surrounding the core.



2 oy
$P > 9

3 “He | 220

Helium fusion tough —larger charge leads to greater
repulsion. Worse, the fusion of two helium nuclei doesn’t
work; “He more stable than Beryllium (®Be).

Need three “He nuclei to make carbon (12C).

Only works because of resonant state of carbon predicted
by Fred Hoyle.



- helium fusing into
/\( carbon in core

\I

y

/

/
,/>\ hydrogen-burning
shell

Helium burning stars reside for a brief time on the
Horizontal Branch.
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[Life Track After Helium Flash

helium flash

* Red giants shrink
life track of star that lost
considerable mass and become leSS
during red giant phase .
luminous after
helium fusion
begins 1n the core.

life track of star that lost less
mass during red giant phase
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[Life Track After Helium Flash

stars nearly ready for y Hellum_bumlng
faant ""S“\ stars are found in a

horizontal branch
red glants

helium-buming stars
(horizontal brqnch)

o 0 s

on the H-R diagram.

) . - subgiants
main-sequence ”

turnoff point

main-sequence
stars
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white dwarfs 3
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Double-Shell Burning

Helium also gets used up. He continues to fuse
into carbon 1n a shell around the carbon core, and
H fuses to He 1n a shell around the helium layer.

The star expands again, ascending the
Asymptotic Giant Branch

This double-shell-burning stage never reaches
equilibrium—the fusion rate periodically spikes
upward 1n a series of thermal pulses.

With each spike, some of the outer layers may be
lost to space.



Planetary Nebulae

* Double-shell
burning ends with a
pulse that ejects the
H and He 1nto space

as a planetary
nebula.

 The core left behind
becomes a white
dwartf.




End of Fusion

* Fusion progresses no further in a low-mass star
because the core temperature never grows hot
enough for fusion of heavier elements (some He
fuses to C to make oxygen).

* Degeneracy pressure supports the white dwart
against gravity.

« White dwarf spend eternity cooling off, eventually
going dark entirely:.
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Life Track of a Sun-Like Star

double shell-
burning
red giant

planetary nebula

helium-
burning
star

white dwarf

0
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surface temperature (Kelvin)

inert carbon
% helium-burning shell
hydrogen-burning shell

double shell-
burning core

helium burning

hydrogen-burning shell

helium-burning
star core

inert helium

hydrogen-burning shell

subgiant/
red giant core
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Main sequence star < 3
~10 billion years

\fHelium Flash*

Horizontal Branch star ‘
~100 million years

Planetary Nebula
~10 thousand years

White Dwarf
cternity e -




The evolution of high-mass stars

M > 8M,

Sun




CNO Cycle

Step 1

N
N 9.
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* High-mass main-
sequence stars fuse
H to He at a higher
rate using carbon,
nitrogen, and
oxygen as catalysts.

* The CNO cycle 1s
more efficient than
the proton-proton
chain in stars more
massive than 1.5
solar masses.



Life Stages of High-Mass Stars

Late life stages of high-mass stars are similar to
those of low-mass stars:

Hydrogen core fusion (main sequence)
Hydrogen shell burning (supergiant)

Helium core fusion (supergiant)

—FEtc:

—more stages of nuclear burning as well
—C, O, Ne, Mg, Si, all the way up to Fe (iron)



Supergiants

(151 [

luminosity (solar units)

0 | E | | I
10°° g e - o coammm
30,000 10,000 6,000 3,000
surface temperature (Kelvin)




High mass stars make the
elements necessary for life

The oxygen and heavier elements in our bodies were
made 1n the nuclear furnace of high mass stars.
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Helium capture builds C into O, Ne, Mg ...
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relative abundance (atoms per hydrogen atom)
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Advanced Nuclear Burning
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Core temperatures 1n stars with >8M¢

allow fusion of elements as heavy as iron.
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Advanced reactions in stars make elements like Si1, S, Ca,
and Fe.




luminosity (solar units)
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Supergiants

can get a wiggle
in evolutionary
track as each
fuel supply is
exhausted.

Evolution
very rapid -
massive stars

live “only”

millions of years



Multiple-Shell Burning

nonburning hydrogen ¢ AdVanCed HUCIGar
\Pyrogen fusion burning proceeds in

a series of nested
shells.

| . .
\ helium fusion
inert I carbon fusion

iron core l /

e Core of high mass
(> 8Mun) near the

end of its life

’ neon fusion
magnesium fusion

|
silicon fusion

oxygen fusion

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa



nuclear particle

Mass per

Iron 1s a dead
end for fusion
because nuclear
reactions
involving iron
do not release
energy.
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relative abundance (atoms per hydrogen atom)

hydrogen

helium

carbon

M oxygen

Neon
magnesium
silicon , argon
sulfur calei

Iron

Iron peak

nickel

Where do

5 , elements
nitrogen ]
heavier than
ooron .
E 1Iron come
from?

beryllium

L Jithium Supernovae '
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nuclear particle
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Iron 1s the
ultimate ash.

With nothing
left to support
1t, the core
collapses and
the outer parts
explode,
carrying
clements into
space.
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Energy and neutrons released in a supernova explosion enable
clements heavier than iron to form, including Au (gold) and Uranium.




Made in Early Universe

- Made in the laborator
‘ | By e “u



Supernova Remnant

* Energy released by
the collapse of the
core drives outer
layers 1nto space.

e The Crab Nebula is
the remnant of the

supernova seen in
A.D. 1054.



Supernova 1987A

The closest supernova 1n the last four

centuries was seen in 1987 in the LMC

who’s next? Betelgeuse? eta Carina?
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Atmosphere of Betelgeuse
PRC96-04 - ST Scl OPO . January 15, 1995 - A. Dupree (CfA), NASA



Eta Carinae

(southern hemisphere)



Role of Mass

« A star’s mass determines its entire life story
because it determines 1ts core temperature.

* High-mass stars have short lives, eventually
becoming hot enough to make iron, and end 1n
supernova explosions.

* Low-mass stars have long lives, never become hot
enough to fuse beyond carbon nuclel, and end as
white dwarfs.



