TODAY

STARS

EVOLUTION OF LOW AND HIGH MASS STARS

NUCLEOSYNTHESIS

SUPERNOVAE - THE EXPLOSIVE DEATHS OF MASSIVE STARS

The life stages of a low-mass star

Life Track After Main Sequence

- Observations of star
 clusters show that a
 star becomes larger,
 redder, and more
 luminous after its
 time on the main
 sequence is over.
- At the end of their main sequence life time - when hydrogen in the core is exhausted - stars ascend the **red giant branch**.

After hydrogen fuel is spent

- Without further fusion, the core contracts. H begins fusing to He in a shell around the core.
- As the core contracts, temperature increases, nuclear reaction rates increase (in the shell), and the Luminosity increases.

Helium Flash

- The core continues to shrink and heat as the rest of the star expands and becomes more luminous.
 Ascends giant branch for a billion years
- At a critical temperature and density, helium fusion suddenly begins.

– The Helium Flash

• The star evolves rapidly, finding a new equilibrium with He burning in core and H burning in a shell surrounding the core.

Helium fusion tough—larger charge leads to greater repulsion. Worse, the fusion of two helium nuclei doesn't work; ⁴He more stable than Beryllium (⁸Be). Need three ⁴He nuclei to make carbon (¹²C). Only works because of resonant state of carbon predicted by Fred Hoyle.

Helium burning stars reside for a brief time on the **Horizontal Branch**.

Life Track After Helium Flash

• Red giants shrink and become less luminous after helium fusion begins in the core.

Life Track After Helium Flash

 Helium-burning stars are found in a *horizontal branch* on the H-R diagram.

Double-Shell Burning

- Helium also gets used up. He continues to fuse into carbon in a shell around the carbon core, and H fuses to He in a shell around the helium layer.
- The star expands again, ascending the **Asymptotic Giant Branch**
- This double-shell-burning stage never reaches equilibrium—the fusion rate periodically spikes upward in a series of *thermal pulses*.
- With each spike, some of the outer layers may be lost to space.

Planetary Nebulae

- Double-shell burning ends with a pulse that ejects the H and He into space as a *planetary nebula*.
- The core left behind becomes a white dwarf.

End of Fusion

- Fusion progresses no further in a low-mass star because the core temperature never grows hot enough for fusion of heavier elements (some He fuses to C to make oxygen).
- Degeneracy pressure supports the white dwarf against gravity.
- White dwarf spend eternity cooling off, eventually going dark entirely.

Life Track of a Sun-Like Star

Main sequence star ~10 billion years

subgiant/Red Giant
~1 billion years

Helium Flash

Horizontal Branch star ~100 million years

Asymptotic Giant ~10 million years

White Dwarf eternity

Planetary Nebula ~10 thousand years

© 200

The evolution of high-mass stars

 $M > 8M_{Sun}$

CNO Cycle

- High-mass mainsequence stars fuse H to He at a higher rate using carbon, nitrogen, and oxygen as catalysts.
- The CNO cycle is more efficient than the proton-proton chain in stars more massive than 1.5 solar masses.

Life Stages of High-Mass Stars

- Late life stages of high-mass stars are similar to those of low-mass stars:
 - —Hydrogen core fusion (main sequence)
 - —Hydrogen shell burning (supergiant)
 - —Helium core fusion (supergiant)

—Etc:

more stages of nuclear burning as wellC, O, Ne, Mg, Si, all the way up to Fe (iron)

Supergiants

Copyright @ 2007 Pearson Education, Inc., publishing as Pearson Addison-Wesley

High mass stars make the elements necessary for life

The oxygen and heavier elements in our bodies were made in the nuclear furnace of high mass stars.

			Key														
Hydrogen 1.00794			1 Magn 243	2	Atom Elem Elem Atom	ic numbe ent's sym ent's nam ic mass*	er Ibol ne										He Helium
ů	Be											B	c	Ň	ő	F	Ne
Lithium	Beryllium		*Ator	mic mass	ses are fra	actions be	ecause ti	hey repre	esent a			Boron	Carbon	Nitrogen	Oxygen	Fluorine	Neon
6.941	9.61218		in no	nted ave	rage of a to the abi	iomic ma	of each i	sotope o	sotopes- n Farth			10.81	12.011	14.007	15,999	18.988	20.179
Na	Ma		AI SI P S CI A														
Sodium	Magnesium		Aluminum Silicon Phosphorus Sultur Chlorine Ar														
22.990	24 305											26.98	28.086	30.974	32.06	35.453	39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	SC	Theorem	V	Cr	Mn	Fe	Co	NI	Cu	Zn	Ga	Ge	AS	Se	Br	Fr
39.098	40.08	44.956	47.88	50.94	51.996	54.938	55.847	58.9332	58.69	63.546	65.39	69.72	72.59	74.922	78.95	79.904	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
Rubidium	Strontium	Yttrium	Zirconium	Nichium	Molybdenum	Technetium	Ruthenium	Rhodium	Palladium	Silver	Cadmium	Indium	Tin	Antimony	Tellurium	lodine	Xenon
80.468 EE	8/.52	88.9050	91.224	32.91	95.94	(38)	101.0/	102.905	105.42	107.868	112.41	114.82	118./1	121./5	127.60	126.905	131.29
Cs	Ba		Hf	Ta	w	Re	Os	Ir	Pt	Au	Ha	Ti	Pb	Bi	Po	At	Rn
Cesium	Barium		Hamium	Tantalum	Tungsten	Rhenium	Osmium	Iridium	Platinum	Gold	Mercury	Thalium	Lead	Bismuth	Polonium	Astatine	Radon
132.91	137.34		178.49	180.95	183.85	186.207	190.2	192.22	195.08	196.967	200.59	204.383	207.2	208.98	(209)	(210)	(222)
87	88		104	105	106	107	108	109	110	111	112						
Francium	Ratium		RI	Dubrium	Sesteration	Babrium	Hastian	Meitneriam	Un	Uuu	Uub						
(223)	226.0254		(261)	(262)	(263)	(262)	(265)	(266)	(269)	(272)	(277)						
			Lanthan	ide Sei	ries												
			57	58	59 Dr	60 Nd	61 Dem	62 Cm	63 E.:	64 Cd	65 Th	66 Dr	67	68 Er	69 T.m	70	71
			La	Cetium	Pr	No	Pm	Sanatium	Eu	Gatolinium	Terham	Dispensium	Holmium	Er	Delem	Yterhium	Lutetium
			138.906	140.12	140.908	144.24	(145)	150.36	151.96	157.25	158.925	162.50	164.93	167.26	168.934	173.04	174.967
			Actinide	Series													
			89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
			Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
		-	227.028	232.038	231.036	238.029	237.048	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)

Helium capture builds C into O, Ne, Mg ...

Helium capture builds C into O, Ne, Mg ...

> Results in a higher abundances of elements with an even numbers of protons -

> > "alpha elements"

Advanced Nuclear Burning

• Core temperatures in stars with $>8M_{Sun}$ allow fusion of elements as heavy as iron.

			Key														
1 H Hydrogen 1.00794			1 Magn 243	2	Elem Elem Atom	iic numbi ent's syn ent's nan iic mass*	er Ibol ne										He Helium 4.053
3 Lithium 6.941 11 Na Sodium 22.990	4 Be Beryllium 9.01218 12 Mg Aagnesium 24.306		*Ator weig in pr	nic mas: hted ave oportion	ses are fra rage of a to the abo	actions b tomic ma undance	5 B Boron 10.81 13 Al Aluminum 25.98	6 Carbon 12.011 14 Silicon 28.086	7 Nitrogen 14.007 15 P Phosphorus 30.974	8 Ongen 15.000 16 S Sultur 32.05	9 Fluorine 18.988 17 CI Chlorine 35.453	10 Neon 20,129 18 Ar Argon 39,948					
19 K Potassium 39.098	20 Ca Calcium	21 Sc candium 44.956	22 Ti Titanium 47.88	23 V Varadium 50.94	24 Cr Chromium 51,996	25 Mn Manganese 54.938	26 Fe Iron	27 Co Cobalt 58.5002	28 Ni Nickel 58.69	29 Cu Copper 63.546	30 Zn Znc 65.39	31 Ga Gallium 69.72	32 Ge Germanium 72.59	33 As Arsenic 74.922	34 Selenium 78.96	35 Br Bromine 79.904	36 Fr Krypton 83.80
37 Rb Rubidium 85.468	38 Sr Strontium 87.62	39 40 Y Zr Yttrium Zirconium 88.9059 91.224		41 Nb Niobium 92.91	42 Mo Molybdenum 95.94	43 Tc Technetium (98)	44 Ru Ruthenium 101.07	45 Rh Rhodium 102,906	46 Pd Palladium 105.42	47 Ag Silver 107.868	48 Cd Cadmium 112.41	49 In Indium 114.82	50 Sn Tin 118.71	51 Sb Antimony 121.75	52 Te Tellurium 127.60	53 lodine 126.905	54 Xe Xenon 131.29
55 Cs Cesium 132.91	56 Ba Barium 137.34		72 Hf Hatnium 178.49	73 Ta Tantalum 180.95	74 W Tungsten 183.85	75 Re Rhenium 186.207	76 Os 0smium 190.2	77 Ir Iridium 192.22	78 Pt Platinum 195.08	79 Au Gold 196.967	80 Hg Mercury 200.59	81 Ti Thallium 204.383	82 Pb Lead 207.2	83 Bi Bismuth 208.98	84 Po Polonium (209)	85 At Astatine (210)	86 Rn Radon (222)
87 Fr Francium (223)	88 Ra Radium 226.0254		104 Rf Rutherlordium (261)	105 Db Dubrium (262)	106 Sg Seaborgium (263)	107 Bh Bohrium (262)	108 Hs Hassium (265)	109 Mt Meitnerium (266)	110 Uun Urunnilium (269)	111 Uuu Unununium (272)	112 Uub Ununbium (277)						
			Lanthan	ide Se	ries				-		05	00			00	30	- 24
			Lasthanum 138.906	Cerium 140.12	Pr Pr Praseodymium 140.908	Neodymium 144.24	Pm Promethium (145)	Samarium 150.36	Europium 151.96	Gd Gadolinium 157.25	55 Tb Terbium 158.925	Dysprosium 162.50	67 Ho Holmium 164.93	Er Erbium 167.26	69 Tm Thelium 168.934	Yb Ytterbium 173.04	Lutetium 174.967
			Actinide	Series													
			89 Ac Actinium 227.028	90 Th Thorium 232.038	91 Pa Protactinium 231.036	92 U Uranium 238.029	93 Np Neptunium 237.048	94 Pu Plutonium (244)	95 Am Americium (243)	96 Cm Curium (247)	97 Bk Berkelium (247)	98 Cf Californium (251)	99 Es Einsteinium (252)	100 Fm Fermium (257)	101 Md Mendelevium (258)	102 No Nobelium (259)	103 Lr Lawrencium (290)

Advanced reactions in stars make elements like Si, S, Ca,

and Fe.

Supergiants

can get a wiggle in evolutionary track as each fuel supply is exhausted.

Evolution very rapid massive stars live "only" millions of years

Copyright @ 2007 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Multiple-Shell Burning

- Advanced nuclear burning proceeds in a series of nested shells.
- Core of high mass (> 8M_{sun}) near the end of its life

© 2007 Pearson Education Inc., publishing as Pearson Addison-Wesley

Iron is the ultimate ash.

With nothing left to support it, the core collapses and the outer parts explode, carrying elements into space.

			Key														
1 Hydrogen 1.00794			Magn 24.	2	- Atom Elem Elem Atom	nic numb ent's syn ent's nar nic mass*	er Ibol ne										He Helium 4.063
3 Li Lithium 6.941	4 Be Beryllium 9.01218		*Atomic masses are fractions because they represent a weighted average of atomic masses of different isotopes— in proportion to the abundance of each isotope on Earth.														
Na Sodium 22.990	Mg Agresium 24.305			oportoen			Al Aluminun 25.96	Silicon 28.086	Phosphorus 30.974	16 S Sultur 32.05	Chlorine 35.453	Ar Argon 39.948					
19 K Potassium 39.098	Ca Calcium	21 Sc candium 44.956	ZZ Ti Titanium 47.88	23 V Varadium 50.94	24 Cr Chromium 51.996	25 Mn Manganese 54.938	Fe Iron	27 Co Cobalt 58.9032	28 Ni Nickel 58.69	29 Cu Copper 63.546	30 Zn Znc 65.39	Galium 69.72	32 Ge Germanium 72.59	33 As Arsenic 74.922	34 Selenium 78.96	35 Br Bromine 79.904	36 Fr Krypton 83.80
37 Rb Rubidium 85.468	38 Sr Strontium 87.62	39 Y Yttrium 88.9059	40 Zr Zirconium 91.224	41 Nb Niobium 92.91	42 Mo Molybdenum 95.94	43 Tc Technetium (98)	44 Ru Ruthenium 101.07	45 Rh Rhodium 102,905	46 Pd Palladium 105.42	47 Ag Silver	48 Cd Cadmium 112.41	49 In Indium 114.82	50 Sn Tin 118.71	51 Sb Antimony 121.75	52 Te Tellurium 127.60	53 lodine 126.905	54 Xe Xenon 131.29
55 Cs Cesium 132.91	56 Ba Barium 137.34		72 Hf Hatnium 178.49	73 Ta Tantalum 180.95	74 W Tungsten 183.85	75 Re Rhenium 186.207	76 Os 0smium 190.2	77 Ir Iridium 192.22	78 Pt Platinum 195.08	79 Au Gold	80 Hg Mercuny 200.59	81 Ti Thallium 204.383	82 Pb Lead 207.2	83 Bi Bismuth 208.98	84 Po Polonium (209)	85 At Astatine (210)	86 Rn Radon (222)
87 Fr Francium (223)	88 Ra Radium 226.0254		104 Rf Rutherfordium (261)	105 Db Dubrium (262)	106 Sg Seaborgium (263)	107 Bh Bohrium (262)	108 Hs Hassium (265)	109 Mt Meitnerium (266)	110 Ununeilium (269)	111 Uuuu Unununium (272)	112 Uub Ununbium (277)						
	Lanthanide Series															71	
		4	Lathanum 138.906	Ce Cerium 140.12	Pr Praseodymium 140.908	Nd Neodymium 144.24	Pm Promethium (145)	Samarium 150.36	Europium 151.96	Gadolinium 157.25	Tb Terbium 158.925	Dysprosium 162.50	Ho Holmium 164.93	Er Erbium 167.26	Tm Thulium 168.934	Yb Ytterbium 173.04	Lu Lutetium 174.967
			Actinide	e Series	•												
			89 Ac Actinium 227.028	90 Th Thorium 232.038	91 Pa Protactinis 231.036	92 U Uranium 238.029	93 Np Neptunium 237.048	94 Pu Plutonium (244)	95 Am Americium (243)	96 Cm Curium (247)	97 Bk Berkelium (247)	98 Cf Californium (251)	99 Es Einsteinium (252)	100 Fm Fermium (257)	101 Md Mendelevium (258)	102 No Nobelium (259)	103 Lr Lawrencium (290)

Energy and neutrons released in a supernova explosion enable elements heavier than iron to form, including Au (gold) and Uranium.

© 2007 Pearson Education Inc., publishing as Pearson Addison-Wesley

1 H Hydrogen	Made in Early Universe															2 He Helium	
3 Li Lithium	4 Be Beryllium		Made in Stars										9 F Fluorine	10 Ne Neon			
Na Sodium	Mg	-					Al	Silicon	P	Sulfur	Cl	Ar					
19 K Potassium	20 Ca Calcium	21 Sc Scandium	22 Ti Titanium	23 V Vanadium	24 Cr Chromium	25 Mn Manganese	26 Fe Iron	27 Co Cobalt	28 Ni Nickel	29 Cu Copper	30 Zn Zinc	31 Ga Gallium	32 Ge Germanium	33 As Arsenic	34 Se Selenium	35 Br Bromine	36 Kr Krypton
37 Rb Rubidium	38 Sr Strontium	39 Y Yttrium	40 Zr Zirconium	41 Nb Niobium	42 Mo Molybdenum	43 Tc Technetium	44 Ru Ruthenium	45 Rh Rhodium	46 Pd Palladium	47 Ag Silver	48 Cd Cadmium	49 In Indium	50 Sn Tin	51 Sb Antimony	52 Te Tellurium	53 lodine	54 Xe Xenon
55 Cs Cesium	56 Ba Barium	71 Lu Lutetium	72 Hf Hafnium	73 Ta Tantalum	Tungsten	Rhenium	7 S Osmium	Iridium	Platinum	Vae Au Gold	80 Hg Mercury	81 TI Thallium	82 Pb Lead	83 Bi Bismuth	84 Po Polonium	85 At Astatine	86 Rn Radon
87 Fr Francium	88 Ra Radium	103 Lr swrencium	104 Rf Rutherfordium	105 Db Dubnium	106 Sg Seaborgium	107 Bh Bohrium	108 Hs Hassium	109 Mt Meitnerium	110 Ds Darmstadtium	111	112	113	114	115	116	117	118
		N						1	1 ad	e in	the	e lat	ora	itory			
		1		57 La Lanthanum	58 Ce Cerium	59 Pr Praseodymium	60 Nd Neodymium	61 Pm Promethium	62 Sm Samarium	63 Eu Europium	64 Gd Gadolinium	65 Tb Terbium	66 Dy Dysprosium	67 Ho Helmium	68 Er Erbium	69 Tm Thulium	70 Yb Ytterbium
			/	89 Ac Actinium	90 Th Thorium	91 Pa Protactinium	92 U Uranium	93 Np Neptunium	94 Pu Plutonium	95 Am Americium	96 Cm Curium	97 Bk Berkelium	98 Cf Californium	99 Es Einsteinium	100 Fm Fermium	101 Md Mendelevium	102 No Nobelium

Supernova Remnant

- Energy released by the collapse of the core drives outer layers into space.
- The Crab Nebula is the remnant of the supernova seen in A.D. 1054.

Supernova 1987A

- The closest supernova in the last four centuries was seen in 1987 in the LMC.
- who's next? Betelgeuse? eta Carina?

Atmosphere of Betelgeuse PRC96-04 · ST Scl OPO · January 15, 1995 · A. Dupree (CfA), NASA HST •

(southern hemisphere)

Role of Mass

- A star's mass determines its entire life story because it determines its core temperature.
- High-mass stars have short lives, eventually becoming hot enough to make iron, and end in supernova explosions.
- Low-mass stars have long lives, never become hot enough to fuse beyond carbon nuclei, and end as white dwarfs.