TODAY

- THE MILKY WAY
 - **GALACTIC STRUCTURE**
 - THE INTERSTELLAR MEDIUM
 - **STAR FORMATION**
 - STELLAR POPULATIONS

Our Milky Way: the view from above the disk

Galactic Structure

- Stars $\sim 80\%$ of mass - DISK ~80% of stars - BULGE ~20% of stars
- INTERSTELLAS MEDIUM • Gas $\sim 20\%$ of mass - atomic gas ("H I") ~2/3 of gas - molecular gas (H₂) $\sim 1/3$ of gas - hot, ionized gas ("H II")
- Dust
 - between stars
 - mostly in spiral arms & molecular clouds

Multi-wavelength Milky Way

Stellar orbits

Disk

- Most stars are in the disk (2D)
- Disk stars have approximately circular orbits
- Disk stars orbit in same direction
- Individual stars oscillate slightly in the vertical direction (perpendicular to the disk), giving the disk a finite thickness

Bulge & Halo

- Bulge mass < 20% of disk
- Halo fraction small ~1%
- Bulge & halo stars have elliptical orbits
- Bulge & halo stars orbit with random orientations; fill out 3D structure

Sun's orbital period is about 230 million years.

In 4.5 billion years, it has completed over 19 orbits.

Copyright @ Addison Wesley

Copyright © Addison Wesley

Sun's orbital motion (radius and velocity) tells us mass within Sun's orbit:

 $1.0\times 10^{11}\,M_{\rm Sun}$

Orbital Velocity Law

$$V^2 = {GM \over R}$$
 measure circular velocity and radius solve for mass: $M = {V^2 R \over G}$

• The orbital speed (V) and radius (R) of an object on a circular orbit around the galaxy tell us the mass (M) enclosed within that orbit.

stars and gas:
$$M pprox 6 imes 10^{10} \ M_{sun}$$

Relation of Milky Way components

Gas recycling in our galaxy

• Stars form in cold molecular gas clouds

- Stars form in cold molecular gas clouds
- High mass stars explode
 - return processed gas to interstellar medium
 - heat surrounding gas
 - Supernova bubbles
 - Jonized gas (H II regions) [hot stars emit UV radiation]

- Stars form in cold molecular gas clouds
- High mass stars explode
- Hot gas cools
 - First into "warm" atomic gas (H I), then
 - into "cold" molecular gas (H₂) in dusty places (~30 K)

- Stars form in cold molecular gas clouds
- High mass stars explode
 - return processed gas to interstellar medium
 - heat surrounding gas
 - Supernova bubbles
 - Ionized gas (H II regions) [hot stars emit UV radiation]
 - Hot gas cools
 - First into "warm" atomic gas (H I), then
 - into "cold" molecular gas (H₂) in dusty places
 - Stars form in cold molecular gas clouds

Note: recycling is inefficient. Some mass locked up in remnants.

The Effects of Dust

- Interstellar dust
 - small grains in space
 - scatters star light passing through it
- Dims light
- Reddens it

The Effects of Dust

- Interstellar dust
 - small grains in space
 - scatters star light passing through it
- Dims light
 - blocks some light

- stars appear fainter than they otherwise would
- Reddens
 - preferentially scatters blue light
 - light that gets through is redder than it started

Various Nebulae

H II Regions *Ionization nebulae* are found around short-lived high-mass stars, signifying active star formation.

Reflection nebulae scatter the light from stars.

Why do reflection nebulae look bluer than the nearby stars?

Reflection nebulae scatter the light from stars.

Why do reflection nebulae look bluer than the nearby stars?

For the same reason that our sky is blue!

reflection nebula —

What kinds of nebulae do you see?

© 2007 Pearson Education Inc., publishing as Pearson Addison-Wesley

Star formation

- Stars form in molecular clouds
- Molecular clouds contain a lot of dust
- Most star formation occurs in spiral arms

Spiral arms are waves of star formation:

- 1. Gas clouds get squeezed as they move into spiral arms.
- 2. The squeezing of clouds triggers star formation.
- 3. Young stars flow out of spiral arms.

Stellar Populations

• Population I

- circular orbits in plane of disk
- mix of ages
 - young, newly formed OB stars
 - old stars (& everything in between)
- metal rich, like sun (~2% mass in "metals")

• Population II

- elliptical orbits of all orientations
- old stars only
- metal poor in halo (~0.2% metals)
 - but metal rich in bulge

How did our galaxy form?

Our galaxy probably formed from a giant gas cloud.

© 2007 Pearson Education Inc., publishing as Pearson Addison-Wesley

Halo stars formed first as gravity caused the cloud to contract.

The remaining gas settled into a spinning disk.

© 2007 Pearson Education Inc., publishing as Pearson Addison-Wesley

Stars continuously form in the disk as the galaxy grows older.

Stellar Populations

- Population I FORM IN DISK AFTER COLLAPSE
 - circular orbits in plane of disk
 - mix of ages
 - young, newly formed OB stars
 - old stars (& everything in between)
 - metal rich, like sun ($\sim 2\%$ mass in "metals")
- Population II FORM DURING COLLAPSE
 - elliptical orbits of all orientations
 - old stars only
 - metal poor in halo (~0.2% metals)
 - but metal rich in bulge