TODAY

- The Copernican Revolution
- GALILEO
- PLANETARY MOTION
- TYCHO BRAHE's ObsERVATIONS
- KEPLER's LAWS

Galileo

First telescopic astronomical observations

Ptolemaic View of Venus

Galileo's observations of phases of Venus proved that it orbits the Sun and not Earth.

Competing Cosmologies

Geocentric
Ptolemaic
Earth at center

Explains

- Motion of Sun
- Motion of Moon
- Solar and Lunar Eclipses
- Phases of Moon

Heliocentric

Copernican
Sun at center

The sun is the source of light in both models

Explains

- Motion of Sun
- Motion of Moon
- Solar and Lunar Eclipses
- Phases of Moon

Retrograde Motion
Needs epicycles \quad Consequence of Lapping nicer Inferiority of Mercury \& Venus
Must tie to sun Interior to Earth's Orbit nicer Predicts

- No parallax $\sqrt{ }$
- Parallax X
- Venus: crescent phase only X
- Venus: all phases \downarrow

Heliocentric Cosmology

- Provides better explanation for
- Retrograde motion
- proximity of Mercury and Venus to the Sun
- Provides only explanation for
- Phases of Venus
- Angular size variation of Venus
- What about parallax?
- Undetectable if stars VERY distant
- Finally detected in 1839

Galileo's telescopic discoveries

- Stars in the Milky Way
- Mountains on the Moon
- Sun spots (celestial spheres NOT perfect)
- Rings of Saturn (barely resolved)
- Moons of Jupiter ("Medicean stars")
- Earth NOT center of all revolution
- Phases of Venus
- Good test of geocentric hypothesis

Jupiter and moons

Fig. 4.10

Galilean moons

(from Galileo spacecraft!)

NASA

Letter from Galileo to Prince of Venice reporting the discovery of Jupiter's moons...

Ofiernationy Irwionse

90. mane $* * 0 *$
2. xbri: $O * * *$
3.motr $\bigcirc * *$
3. Ho. 5. * 0 *

4 mand $* 0 \quad * *$
"Medician
6. mane **Q * stars"

Fig. 4.17
Lo. mane? * * $*$ -
11. * * O *
12. H.4 uy达: * O *
13.masu' * *O *

14 كasce. * * $\quad * *$

Heavenly
spheres
NOT
perfect

The moon has geographical features like mountains \& craters

Even the sun has spots!

In 1633 the Catholic Church ordered Galileo to recant his claim that Earth orbits the Sun.

His book on the subject was removed from the Church's index of banned books in 1824.

Galileo was formally vindicated by the Church in 1992.

Galileo Galilei

Tycho Brahe

the last great naked-eye observer

1546-1601

Tycho Brahe

- 2008 Pearen Edication. Ine. pollishing as Adisen Westey
- Brahe compiled the most accurate (one arcminute) naked eye measurements ever made of planetary positions.
- He still could not detect stellar parallax, and thus still thought Earth must be at the center of the solar system (but recognized that other planets go around Sun).

TYCHONIC SYSTEM

Johannes Kepler (1571-1630)

- Kepler analyzed Brahe's data
- Kepler first tried to match Tycho's observations with circular orbits.
- But an 8-arcminute discrepancy led him eventually to ellipses.
"If I had believed that we could ignore these eight minutes [of arc], I would have patched up my hypothesis accordingly. But, since it was not permissible to ignore, those eight minutes pointed the road to a complete reformation in astronomy."

Kepler's Laws of planetary motion

Kepler's First Law: The orbit of each planet around the Sun is an ellipse with the Sun at one focus.

© 2006 Pearson Education, Inc., publishing as Addison Wesley

An ellipse is the shape that is equidistant from two foci. The eccentricity of an ellipse depends on the ratio of the long and short axes. Half of the long axis is the semimajor axis, a.

major axis

An ellipse looks like an elongated circle. Indeed, a circle is a special case of an ellipse where the two foci overlap.

Kepler's Second Law: As a planet moves around its orbit, it sweeps out equal areas in equal times.

© 2006 Pearson Education, Inc., publishing as Addison Wesley
This means that a planet travels faster when it is nearer to the Sun and slower when it is farther from the Sun.

Kepler's Third Law

More distant planets orbit the Sun at slower average speeds, obeying the relationship

$$
\mathrm{P}^{2}=\mathrm{a}^{3}
$$

$p=$ orbital period in years
 $a=$ distance from Sun in AU (semi-major axis of orbit's ellipse)

Earth: $\mathbf{P}=1$ year, $\mathbf{a}=1 \mathrm{AU}$

Kepler's Third Law

- A worked example: Mercury: $\mathrm{P}=0.24$ year

$$
\begin{gathered}
P^{2}=a^{3} \\
a=P^{2 / 3} \\
a=(0.24)^{2 / 3} \\
a=0.39 \mathrm{AU}
\end{gathered}
$$

Kepler's Third Law

- A worked example: Jupiter: $\mathrm{a}=5.2 \mathrm{AU}$

$$
\begin{gathered}
P^{2}=a^{3} \\
P=a^{3 / 2} \\
P=\sqrt{(5.2)^{3}} \\
P=11.9 \text { years }
\end{gathered}
$$

Graphical version of Kepler's Third Law

\mathbf{a}^{3}

d

- Kepler's Laws:

1. The orbit of each planet is an ellipse with the Sun at one focus.
2. As a planet moves around its orbit it sweeps out equal areas in equal times.
3. More distant planets orbit the Sun at slower average speeds: $p^{2}=a^{3}$.

Major Figures in Copernican Revolution

- Copernicus: [Re]Invented Heliocentric model.
- Tycho Brahe: Collected large, accurate database on planetary positions \& motions. Failed to detect parallax; suggested hybrid.
- Kepler: Used Brahe's data to discern his three Laws of planetary motion.
- Galileo: telescopic observations and physical arguments in favor of heliocentric model.

