TODAY

ENERGY

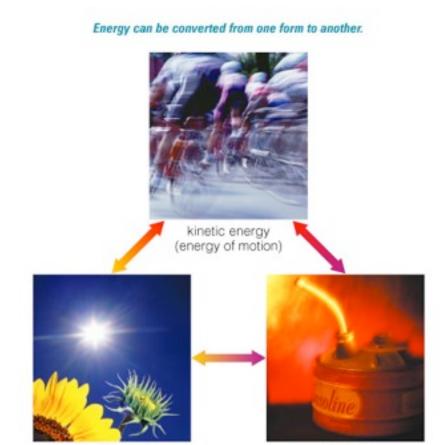
GRAVITY

EVENTS

HOMEWORK DUE NEXT TIME

PRACTICE EXAM POSTED

Autumn is here!

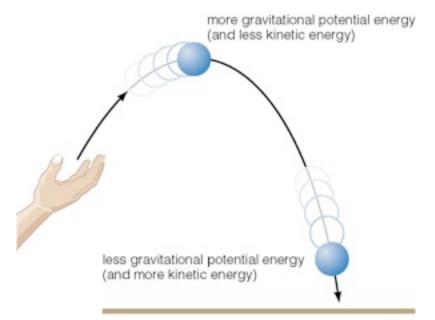

- Autumnal equinox occurred at 11:09pm last night
 - night and day very nearly equal today
 - days getting shorter
- Moon is full right now ("Harvest moon")
 - Rises as sun sets
 - sunset: 7:21pm (why not 6:00pm?)
 - moonrise: 7:07pm (why not exactly at sunset?)
- Jupiter at Opposition, close to full moon

 near perihelion: closest approach since 1963
 moving retrograde

Basic Types of Energy

- Kinetic (motion)
- Radiative (light)
- Stored or potential

Energy can change type but cannot be destroyed.



radiative energy (energy of light)

potential energy (stored energy)

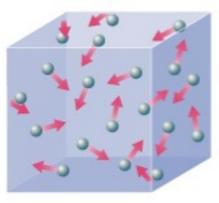
Gravitational Potential Energy

- On Earth, it depends on...
 an object's mass (m).
 - the strength of gravity (g).
 - the distance an object could potentially fall.

Gravitational Potential Energy at top

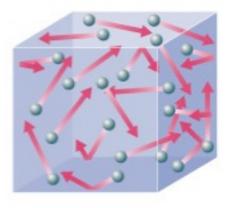
$$mgh = \frac{1}{2}mv^2$$

1

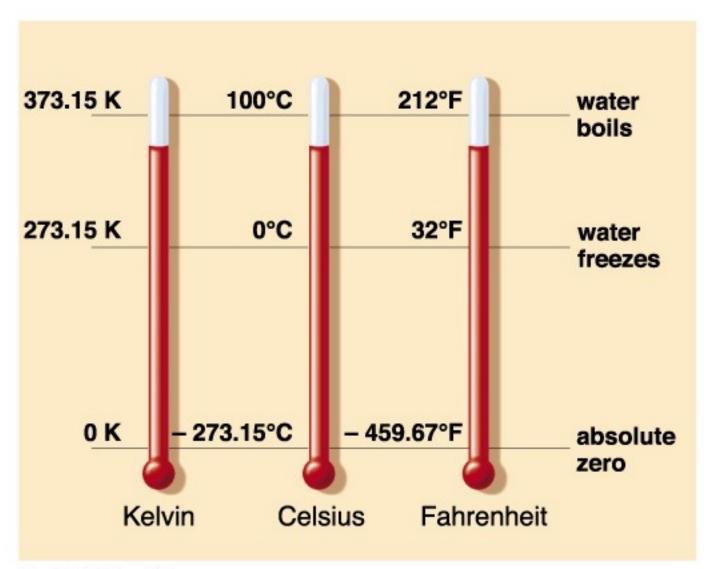

Kinetic Energy at bottom

Thermal Energy:

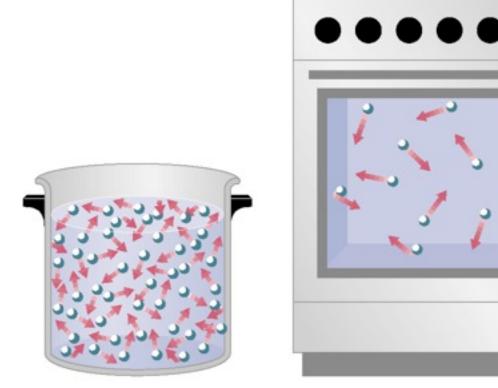
the collective kinetic energy of many particles (for example, in a rock, in air, in water)


Thermal energy is related to temperature but it is NOT the same.

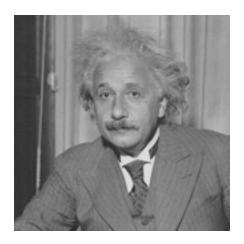
Temperature is the *average* kinetic energy of the many particles in a substance.



lower temperature


higher temperature

Temperature Scales



Thermal energy is a measure of the total kinetic energy of all the particles in a substance. It therefore depends on both *temperature* AND *density*. Example:

212° F

400° F

Mass-Energy

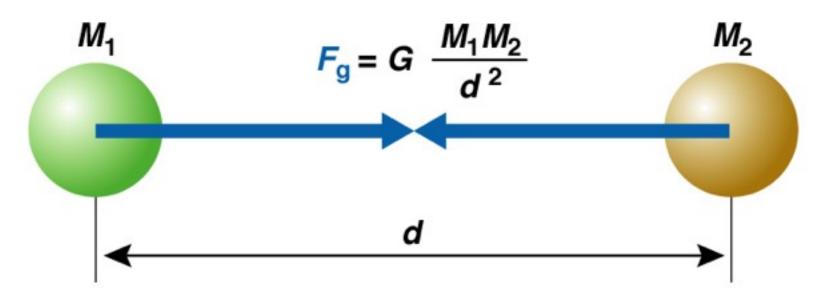
Mass itself is a form of potential energy.

$E = mc^2$

- A small amount of mass can release a great deal of energy.
- Concentrated energy can spontaneously turn into particles (for example, in particle accelerators).
- Total mass-energy is conserved.

Conservation of Energy

- Energy can be neither created nor destroyed.
- It can change form or be exchanged between objects.
- The total energy content of the universe is the same today as it was at the beginning of time.


4.4 The Force of Gravity

- Our goals for learning:
- What determines the strength of gravity?
- How does Newton's law of gravity extend Kepler's laws?
- How do gravity and energy together allow us to understand orbits?
- Why are large objects spherical?
- How does gravity cause tides?

What determines the strength of gravity?

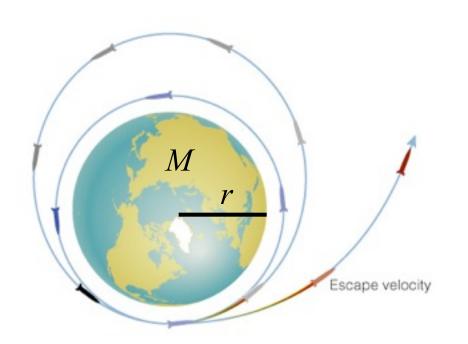
The Universal Law of Gravitation:

- 1. Every mass attracts every other mass.
- 2. Attraction is *directly* proportional to the product of their masses.
- 3. Attraction is *inversely* proportional to the *square* of the distance between their centers.

Newton's version of Kepler's Third Law

$$P^2 = \frac{4\pi^2}{G} \frac{a^3}{(M_1 + M_2)}$$

p = orbital period a = average orbital distance (between centers) $(M_1 + M_2) =$ sum of object masses (e.g., the mass of the sun)


derive

Orbits of the Moons of Jupiter

Moon	P (days)	a (km)	a ³ /P ² (solar masses)
Io	1.8	4 x 10 ⁵	0.001
Europa	3.6	7 x 10 ⁵	0.001
Ganymede	7.2	1 x 10 ⁶	0.001
Callisto	16.7	2 x 10 ⁶	0.001

Jupiter is 0.001 solar masses

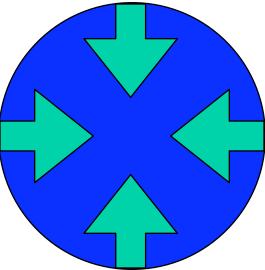
Escape Velocity

- An orbit can be changed by adding or removing energy.
- If an object gains enough orbital energy, it may escape (change from a bound to unbound orbit).
- Escape velocity from Earth ≈ 11 km/s from sea level (about 40,000 km/hr).

Circular & Escape velocity

Circular velocity:
$$v_{circ} = \sqrt{\frac{GM}{r}}$$
 (minimum energy orbit)

Escape velocity:
$$v_{esc} = \sqrt{\frac{2GM}{r}} = \sqrt{2}v_{circ}$$


(maximum energy orbit where object becomes unbound)

Examples:

Object	circular speed at surface	escape speed from surface
Earth	7.8 km/s	11 km/s
Sun	436 km/s	617 km/s
Moon	1.7 km/s	2.4 km/s

Why are stars and planets spherical?

- Gravity pulls it is an attractive force
- IF self-gravity is the most important force holding an object together, it must be spherical.

Example: Earth

- Diameter of Earth: 12,756 km
- Mt. Everest: 8.848 km above sea level
- Mariana Trench: 10.934 km below
- Maximum variation: 19.782 km

maximum variation	 19.782
diameter	 12,756

= 0.0015

- a very smooth sphere!

- Gravity makes individual objects round
 - about 100 km in diameter is where objects start to become dominated by self-gravity
 - planets round
 - asteroids still lumpy

This holds for individual objects. What about multiple objects?

Summary

- Kepler's Laws follow naturally from Newton's Universal Law of Gravity
- Gravitationally bound objects are spherical – e.g., planets, stars