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H2 = H2(Ωm + Ωr + Ωk + ΩΛ)

Friedmann equation
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Ωm + Ωk + ΩΛ = 1the sum of density parameters so defined must be unity:
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cosmological constant

Flat cosmologies have Ωk = −
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(aR0H)2
k = 0 so

H ≡
·a
a

does not remain constant, so the Hubble “constant” 
is just the current value of the Hubble parameter H(z).
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Expansion dynamics

H =
·a
a

a = (1 + z)−1

Newtonian solution:
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3
(ρ + 3P) +

1
3

Λ

d
dt

( ·a)2 = 2 ·a ··a can be used to obtain the first order Friedmann equation

)



Expansion dynamics

H =
·a
a

a = (1 + z)−1

The Acceleration equation with the cosmological constant:

··a
a

= −
4πG

3
(ρ + 3P) +

1
3

Λ

The Pressure P is zero when matter dominates. 
It is simply related to the energy density when radiation dominates.

can usually 
be replaced 
with a single 
variable, as    P = w𝛒 
for a single medium. 

You can see why the cosmological 
constant leads to acceleration!

··a ∼ Λ

d
dt

( ·a)2 = 2 ·a ··a can be used to obtain the first order Friedmann equation

P = wρ w = 0
w = 1/3

non-relativistic mass (“dust”)

photons



Expansion dynamics

H =
·a
a

a = (1 + z)−1

Friedmann equation

H2 = H2(Ωm + Ωr + Ωk + ΩΛ)

Ωm + Ωr + Ωk + ΩΛ = 1
Looks trivial, but H and Ω evolve. So really

In general, must solve numerically. 
But often we can ignore irrelevant terms -

matter radiation curvature cosmological constant

Only one matters unless close to the 
redshift of matter-radiation equality zeq.

Zero in a flat universe
Zero in a sane universe

So often only two terms matter. 
In the early universe, only one, 
as the mass-energy dominates.

H2 = H0
2[Ωm0

a−3 + Ωr0
a−4 + Ωk0

a−2 + ΩΛ0
]

or equivalently, H2 = H0
2[Ωm0

(1 + z)3 + Ωr0
(1 + z)4 + Ωk0

(1 + z)2 + ΩΛ0
]



Expansion dynamics

H =
·a
a

a = (1 + z)−1

Friedmann equation

Ωm + Ωr + Ωk + ΩΛ = 1It is useful to consider the limit for domination by each case (matter, radiation, curvature, cosmological constant)

( H
H0 )

2

= Ωm0
(1 + z)3 + Ωk0

(1 + z)2

Or just

for a universe without a cosmological constant in the matter dominated era ( ).Ωm > Ωr

at early times when .Ωm → 1

Simplifies to

( H
H0 )

2

= Ωm0
(1 + z)3

H2 = H0
2[Ωm0

(1 + z)3 + Ωr0
(1 + z)4 + Ωk0

(1 + z)2 + ΩΛ0
]



Expansion dynamics

H =
·a
a

a = (1 + z)−1

Friedmann equation

Ωm + Ωr + Ωk + ΩΛ = 1

( H
H0 )

2

= Ωr0
(1 + z)4 for the early, radiation dominated universe when .Ωr ≫ Ωm

Simplifies to

has some interesting limiting behaviors

H2 = H0
2[Ωm0

(1 + z)3 + Ωr0
(1 + z)4 + Ωk0

(1 + z)2 + ΩΛ0
]

https://masterofallscience.com/caption/S02E01/1332289


Expansion history

H =
·a
a

H2(z) = H0
2[Ωm0

(1 + z)3 + Ωr0
(1 + z)4 + Ωk0

(1 + z)2 + ΩΛ0
] a = (1 + z)−1

Friedmann equation

Ωm + Ωr + Ωk + ΩΛ = 1

E2(z) = Ωm0
(1 + z)3 + Ωr0

(1 + z)4 + Ωk0
(1 + z)2 + ΩΛ0

It is convenient to define the Expansion term

So that

H(z) = H0E(z)

Generalization of the search for two numbers: now want to measure  H0, E(z)
where E(z) contains information about the various 𝛀.

E2(a) = Ωm0
a−3 + Ωr0

a−4 + Ωk0
a−2 + ΩΛ0

or equivalently

·a
a

= H0E(a)

or equivalently



Expansion history

H =
·a
a

a = (1 + z)−1

Friedmann equation

Ωm + Ωr + Ωk + ΩΛ = 1

so  q0 becomes a proxy for E(z)

·a
a

= H0E(a)

If we don’t know the full details of  E(a), we can make a Taylor expansion

a(t) ≈ 1 + H0(t − t0) −
1
2

q0H2
0(t − t0)2 + . . .

where we see the deceleration parameter as the next term after the Hubble constant
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= −
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··a
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E(z) = Ωm0
(1 + z)3 + Ωr0

(1 + z)4 + Ωk0
(1 + z)2 + ΩΛ0



Expansion history

H =
·a
a

a = (1 + z)−1

Ωm + Ωr + Ωk + ΩΛ = 1

If we don’t know the full details of  E(a), we can make a Taylor expansion

a(t) ≈ 1 + H0(t − t0) −
1
2

q0H2
0(t − t0)2 + . . .

can define higher order terms that are increasingly difficult to measure

q = −
a··a
·a2

= −
1

H2

··a
a

E(z) = Ωm0
(1 + z)3 + Ωr0

(1 + z)4 + Ωk0
(1 + z)2 + ΩΛ0

deceleration parameter

j =
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·a3
=
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a

jerk

s =
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·a4
=

1
H4

····a
a

snap

crackle, pop…

The deceleration parameter is defined with the negative sign 
so it would be a positive number in a decelerating universe 
because we really expected that would be the case. 



Solutions from Felten & Isaacman (1986) Reviews of Modern Physics, 58, 689

No cosmological constant

You are here-now
H0 is the slope 

q0 is the next derivative -  
the change in the slope 

Have to see far away before 
you can start to perceive q0, 
hence the desire for bright 
standard candles like 
supernovae.
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H0 is the slope 

q0 is the next derivative -  
the change in the slope 

Have to see far away before 
you can start to perceive q0, 
hence the desire for bright 
standard candles like 
supernovae.

H0 is
 the slope 

q0 is
 the next derivative, 

leading to the splitti
ng 

of different m
odel lin

es - 

only begins to become 

apparent at high 

redshift -
 subtle!

Hubble Diagram



Expansion history

H =
·a
a

a = (1 + z)−1

There is an analytic solution for matter domination - can parameterize the expansion as a cycloid

Ωm + Ωr + Ωk + ΩΛ = 1

a =
Ωm

2(1 − Ωm)
(cosh η − 1)

E(z) = Ωm0
(1 + z)3 + Ωr0

(1 + z)4 + Ωk0
(1 + z)2 + ΩΛ0

H0t =
Ωm

2(1 − Ωm)3/2
(sinh η − η)

where      is the development parameter - related to the conformal timeη

cosh η0 =
2

Ωm0

− 1

The current value of the development parameter is

This is of no use now because of Lambda, 
BUT it does become useful for the growth 
of structure in the early universe, when 
every protogalaxy can be considered its 
own little island universe with Ωm ≳ 1

Peebles 13.10



ds2 = − c2dt2 + a2(t)[dr2 + S2
k (r)dΩ2]

for photons, ds = 0 so this becomes

cdt = a(t)dr

te

t0

comoving coordinates constant

we know the expansion factor from the redshift

a(t0)
a(te)

= 1 + z

Once we know (or assume) what kind of universe we live in, 
we specify the expansion history a(t).

De = a(te)r

D0 = a(t0)r

Robertson-Walker metric



r = ∫
r

0
dr = c∫

t0

te

dt
a(t)

te

t0

we know the expansion factor from the redshift
a(t0)
a(te)

= 1 + z

Once we know (or assume) what kind of universe we live in, 
we specify the expansion history a(t).

comoving coordinates constant

a photon propagating through the expanding 
universe traverses a distance element

dℓ = cdt = a(t)dr

The comoving separation between two points is fixed, so

Relates observed redshift to 
the time of photon emission 
(400 Myr ago in the example 

at right).



r = c∫
t2

t1

dt
a(t)

= c∫
t3

t2

dt
a(t)

we know the expansion factor from the redshift

a(t2)
a(t1)

= 1 + z1→2

Once we know (or assume) what kind of universe we live in, 
we specify the expansion history a(t).

comoving coordinates constant

a photon propagating through the expanding 
universe traverses a distance element

dℓ = cdt = a(t)dr

The comoving separation between two points is fixed, so

and

relates the redshift to the expansion factor

a(t3)
a(t2)

= 1 + z2→3


