Cosmology and Large Scale Structure

Today Observational Tests

12 September 2024 http://astroweb.case.edu/ssm/ASTR328/

Time-redshift Luminosity Distance-redshift Angular Size Distance-redshift relations in FLRW

homework 2 due Thu 9/19

$$
r = c \int_{t_1}^{t_2} \frac{dt}{a(t)} = c \int_{t_2}^{t_3} \frac{dt}{a(t)}
$$

we know the expansion factor from the redshift

Once we know (or assume) what kind of universe we live in, we specify the expansion history *a(t)*.

comoving coordinates constant

$$
\frac{a(t_2)}{a(t_1)} = 1 + z_{1 \to 2} \qquad \qquad \frac{a(t_3)}{a(t_2)} = 1 + z_{2 \to 3}
$$

a photon propagating through the expanding universe traverses a distance element

$$
d\ell = cdt = a(t)dr
$$

The comoving separation between two points is fixed, so

and

relates the redshift to the expansion factor

$$
D_p(t_0) = c \int_{t_e}^{t_0} \frac{dt}{a(t)}
$$

The proper distance

$$
a(t) \approx 1 + H_0(t - t_0) - \frac{1}{2} q_0 H_0^2 (t - t_0)^2 + \dots
$$

$$
D_p(z_e) = \frac{c}{H_0} \int_0^{z_e} \frac{dz}{E(z)}
$$

In terms of redshift,

For **zero** cosmological constant, there is an exact solution known as [Mattig's equation](https://ned.ipac.caltech.edu/level5/Peacock/Peacock3_4.html):

$$
D_p(z) = \frac{2c}{H_0} \frac{[z\Omega_m + (\Omega_m - 2)(\sqrt{1 + z\Omega_m} - 1])}{\Omega_m^2 (1 + z)}
$$

In general, there is no analytic solution, but can approximate with the Taylor expansion:

$$
D_p(z) = \frac{c}{H_0} \left[z - \frac{1}{2} (1 + q_0) z^2 \right]
$$

$$
D_p(z) = \frac{cz}{H_0}
$$

Where the leading term is Hubble's Law

$$
\Omega_m + \Omega_r + \Omega_k + \Omega_\Lambda = 1
$$

$$
H = \frac{\dot{a}}{a}
$$

$$
a = (1 + z)^{-1}
$$

Friedmann equation

$$
\frac{\dot{a}}{a} = H_0 E(a)
$$

For time rather than distance

$$
H_0 \int_{t_e}^{t_o} dt = \int_{a_e}^{1} \frac{da}{aE(a)} = \int_{0}^{z_e} \frac{dz}{(1+z)E(z)}
$$

$$
E(z) = \sqrt{\Omega_{m_0}(1+z)^3 + \Omega_{r_0}(1+z)^4 + \Omega_{k_0}(1+z)}
$$

$$
H_0(t_0 - t_e) = \int_0^{z_e} \frac{dz}{(1 + z)E(z)}
$$

is the **Lookback time** - the time since the photon was emitted. $(t_0 - t_e)$

note that limits of the integral get flipped

$$
\Omega_m + \Omega_r + \Omega_k + \Omega_\Lambda =
$$

$$
H = \frac{\dot{a}}{a}
$$

$$
a = (1 + z)^{-1}
$$

$$
E(z) = \sqrt{\Omega_{m_0}(1+z)^3 + \Omega_{r_0}(1+z)^4 + \Omega_{k_0}(1+z)}
$$

Peacock (3.46)

The age of the universe is obtained by setting $\Omega_m + \Omega_L + \Omega_L + \Omega_L = 1$

$$
t_e = 0 \; ; \; z \to \infty
$$

$$
H_0 t_0 = \int_0^\infty \frac{dz}{(1+z)E(z)}
$$

which can be approximated by

$$
t_0 \approx \left(\frac{2}{3H_0}\right) (0.7\Omega_{m_0} + 0.3 - 0.3\Omega_{\Lambda_0})^{-0.3}
$$

There is no deep theory in this last formula. It is just a fitting formula that approximates the answer to a few %.

Similarly, the redshift-age of a matter dominated universe can be approximated as

$$
\frac{1}{t(z)} \approx H(z)[1 + \frac{1}{2}\Omega_m^{0.6}(z)]
$$
 P

Flat cosmologies

Peebles, Principles of Physical CosmologyPeebles, Principles of Physical Cosmology

 \sim \mathbb{R}^2 . Section \sim

Figure 13.1. Lookback time as a function of redshift. The long dashes on the right-hand axis show the age t_o of the universe computed from $z \rightarrow \infty$. In panel (a) space curvature is negligible, and in panel (b) the cosmological constant, Λ , is negligibly small. The curves are labeled by the density parameter, Ω .

Zero cosmological constant

These cosmologies have only decelerated, so must have ages less than one Hubble time.

 \sim

 $\mathcal{F}^{\text{max}}_{\text{max}}$ and

factors $R(\tau)$ for the "standard models" ($\Lambda = 0$). The free parameter, shown on the curves, is Ω_0 . As shown by the τ intercepts, all models have ages ≤ 1 ($\leq H_0^{-1}$ yr).

from Ω_0 by Eq. (14).

Solutions from Felten & Isaacman (1986) Reviews of Modern Physics, **58**, 689

FIG. 1. Solutions of the Friedmann equation. Three families of scale factors $R(\tau)$ for Friedmann (zero-pressure) universes, with three fixed values of the present density parameter Ω_0 : (a) $\Omega_0 = 0.1$; (b) $\Omega_0 = 1$; (c) $\Omega_0 = 3$. The free parameter, shown on the curves, is the cosmological constant Λ in units of H_0^2 , where H_0 is the present Hubble parameter. The time τ is measured in units of the Hubble time H_0^{-1} and is taken = 0 at present. The scale factor $R(\tau)$ is normalized to unity at present: $R_0 = 1$. For further discussion see the text.

Can in principle have solutions in which there was no Big Bang in the past, depending on the value of Lambda.

Ω_m , Ω_{Λ} , Ω_k all non-zero

Observational Tests Five Classic Tests

- Standard Candle
- Standard Rod
	- Source counts with redshift
	- Source counts with magnitude
		- Surface brightness not distance independent in Robertson-Walker geometry

Other tests are possible. E.g., one could in principle make an age-redshift test - if one could confidently measure ages of objects at cosmic distances.

Figure 13.1. Lookback time as a function of redshift. The long dashes on the right-hand axis show the age to of the unicurvature is negligible, and in panel (b) the cosmological constant, Λ , is negligibly small. The curves are labeled by the density parameter, Ω .

• Age-redshift relation

age-redshift test now possible with JWST

zh−Z $290^{+0.005}_{-0.006}$ $.19^{+0.04}_{-0.04}$ $.80^{+0.11}_{-0.12}$ $8^{+1.55}_{-0.98}$ $\substack{+5.54\-1.92}$ $.89^{+21.12}_{-13.04}$ $27^{+0.09}_{-0.07}$ $16^{+0.03}_{-0.02}$ $7^{+0.01}_{-0.01}$ $07^{+0.08}_{-0.11}$

[arXiv:2409.03829](https://arxiv.org/abs/2409.03829)

Table 2. Physical properties of RUBIES-UDS-QG-z7, as measured with Prospector for the fiducial model (free Z) and the high metallicity (high-Z) fit.

quantity	$_{\rm fiducial}$	hig
$z_{\rm spec}$	$7.287^{+0.007}_{-0.006}$	7.2
$log(M_{*}/M_{\odot})$	$10.23_{-0.04}^{+0.04}$	10.
$\rm \log(\Sigma_{*,c}/M_{\odot}\,kpc^{-2})$	$10.85^{+0.11}_{-0.12}$	10.
${\rm SFR}_{10}~[{\rm M}_{\odot}\,{\rm yr}^{-1}]$	$0.64^{+0.83}_{-0.60}$	1.0
${\rm SFR}_{50}~{\rm [M_{\odot}\,yr^{-1}]}$	$0.83^{+11.11}_{-0.76}$	$^{2.1}$
${\rm SFR_{100}}\; [{\rm M_\odot\,yr^{-1}}]$	$0.84^{+20.16}_{-0.78}$	48.
A_V [mag]	$0.34^{+0.08}_{-0.09}$	$\rm 0.2$
t_{50} [Gyr]	$0.20^{+0.07}_{-0.02}$	0.1
$t_{90}~[\rm{Gyr}]$	$0.12^{+0.01}_{-0.01}$	0.0
$\log(Z/Z_{\odot})$	$-0.94\substack{+0.05\-0.04}$	0.0

Figure 1. NIRSpec/PRISM Spectrum of RUBIES-UDS-QG-z7. Top: 2D SNR spectrum. Bottom: 1D spectrum of RUBIES-UDS-QG-z7 in red, with 1σ uncertainties in gray. The NIRCam photometry is shown as orange dots and the best-fitting SED from prospector in blue (see Section 3). A zoom-in to the region around 0.4μ m is shown in the inset panel, where we highlight the position of various absorption features. Note also that the best-fitting SED latches on the Balmer absorption lines.

Age-redshift test enabled by JWST observations

• Tolman Test

Surface brightness dimming

No surface brightness dimming in Euclidean geometry

Lots of surface brightness dimming in Robertson-Walker geometry

$$
\Sigma \sim \frac{f}{\theta^2} \sim \frac{D^{-2}}{D^{-2}} \sim \text{constant}
$$

$$
\Sigma \sim \frac{f}{\theta^2} \sim \frac{D_L^{-2}}{D_A^{-2}} \sim \frac{D_p^{-2}(1+z)^{-2}}{D_p^{-2}(1+z)^2} \sim (1+z)^{-4}
$$

Surface brightness dims as a strong function of redshift!

The Tolman test is a sanity check: it does not distinguish between FLRW models: the same amount of dimming occurs in all. In practice, it is hard to distinguish from evolutionary effects. • Angular size-redshift relation

• Angular size-redshift relation

Li (2023) Fig. 4

angular sizes of compact radio sources

