Cosmo ogy and Large Scale Structure

12 September 2024

<u>Today</u> **Observational Tests**

Time-redshift Luminosity Distance-redshift Angular Size Distance-redshift relations in FLRW

homework 2 due Thu 9/19

http://astroweb.case.edu/ssm/ASTR328/

comoving coordinates constant

Once we know (or assume) what kind of universe we live in, we specify the expansion history *a*(*t*).

we know the expansion factor from the redshift

a photon propagating through the expanding universe traverses a distance element

$$d\ell = cdt = a(t)dr$$

The comoving separation between two points is fixed, so

$$r = c \int_{t_1}^{t_2} \frac{dt}{a(t)} = c \int_{t_2}^{t_3} \frac{dt}{a(t)}$$

$$\frac{a(t_2)}{a(t_1)} = 1 + z_{1 \to 2} \qquad \qquad \frac{a(t_3)}{a(t_2)} = 1 + z_{2 \to 3}$$

relates the redshift to the expansion factor

The proper distance

$$D_p(t_0) = c \int_{t_e}^{t_0} \frac{dt}{a(t)}$$

$$a(t) \approx 1 + H_0(t - t_0) - \frac{1}{2}q_0H_0^2(t - t_0)^2 + \dots$$

In terms of redshift,

$$D_p(z_e) = \frac{c}{H_0} \int_0^{z_e} \frac{dz}{E(z)}$$

For zero cosmological constant, there is an exact solution known as <u>Mattig's equation</u>:

$$D_{p}(z) = \frac{2c}{H_{0}} \frac{[z\Omega_{m} + (\Omega_{m} - 2)(\sqrt{1 + z\Omega_{m}} - 1])}{\Omega_{m}^{2}(1 + z)}$$

In general, there is no analytic solution, but can approximate with the Taylor expansion:

$$D_p(z) = \frac{c}{H_0} \left[z - \frac{1}{2} (1 + q_0) z^2 \right]$$

Where the leading term is Hubble's Law

$$D_p(z) = \frac{cz}{H_0}$$

For time rather than distance

Friedmann equation

$$\frac{\dot{a}}{a} = H_0 E(a)$$

$$H_0 \int_{t_e}^{t_o} dt = \int_{a_e}^{1} \frac{da}{aE(a)} = \int_{0}^{z_e} \frac{dz}{(1+z)E(z)}$$

note that limits of the integral get flipped

$$H_0(t_0 - t_e) = \int_0^{z_e} \frac{dz}{(1 + z)E(z)}$$

is the Lookback time - the time since the photon was emitted. $(t_0 - t_e)$

$$\Omega_m + \Omega_r + \Omega_k + \Omega_\Lambda = 1$$
$$H = \frac{\dot{a}}{a}$$
$$a = (1 + z)^{-1}$$

$$E(z) = \sqrt{\Omega_{m_0}(1+z)^3 + \Omega_{r_0}(1+z)^4 + \Omega_{k_0}(1+z)^2 + \Omega_{\Lambda_0}}$$

The age of the universe is obtained by setting

$$t_e = 0 \ ; \ z \to \infty$$
$$H_0 t_0 = \int_0^\infty \frac{dz}{(1+z)E(z)}$$

which can be approximated by

$$t_0 \approx \left(\frac{2}{3H_0}\right) (0.7\Omega_{m_0} + 0.3 - 0.3\Omega_{\Lambda_0})^{-0.3}$$

There is no deep theory in this last formula. It is just a fitting formula that approximates the answer to a few %.

Similarly, the redshift-age of a matter dominated universe can be approximated as

$$\frac{1}{t(z)} \approx H(z)[1 + \frac{1}{2}\Omega_m^{0.6}(z)]$$
 P

$$\Omega_m + \Omega_r + \Omega_k + \Omega_\Lambda = 1$$
$$H = \frac{\dot{a}}{a}$$
$$a = (1 + z)^{-1}$$

$$E(z) = \sqrt{\Omega_{m_0}(1+z)^3 + \Omega_{r_0}(1+z)^4 + \Omega_{k_0}(1+z)}$$

Peacock (3.46)

Peebles, Principles of Physical Cosmology

× ·

.

Figure 13.1. Lookback time as a function of redshift. The long dashes on the right-hand axis show the age to of the universe computed from $z \rightarrow \infty$. In panel (a) space curvature is negligible, and in panel (b) the cosmological constant, Λ , is negligibly small. The curves are labeled by the density parameter, Ω .

Flat cosmologies

Zero cosmological constant

These cosmologies have only decelerated, so must have ages less than one Hubble time.

•

· .

FIG. 3. "Standard" Friedmann models. The family of scale factors $R(\tau)$ for the "standard models" ($\Lambda = 0$). The free parameter, shown on the curves, is Ω_0 . As shown by the τ intercepts, all models have ages $\leq 1 \ (\leq H_0^{-1} \text{ yr}).$ from Ω_0 by Eq. (14).

Can in principle have solutions in which there was no Big Bang in the past, depending on the value of Lambda.

$\Omega_m, \Omega_\Lambda, \Omega_k$ all non-zero

Solutions from Felten & Isaacman (1986) Reviews of Modern Physics, 58, 689

FIG. 1. Solutions of the Friedmann equation. Three families of scale factors $R(\tau)$ for Friedmann (zero-pressure) universes, with three fixed values of the present density parameter Ω_0 : (a) $\Omega_0=0.1$; (b) $\Omega_0=1$; (c) $\Omega_0=3$. The free parameter, shown on the curves, is the cosmological constant Λ in units of H_0^2 , where H_0 is the present Hubble parameter. The time τ is measured in units of the Hubble time H_0^{-1} and is taken =0 at present. The scale factor $R(\tau)$ is normalized to unity at present: $R_0 = 1$. For further discussion see the text.

Observational Tests Five Classic Tests

•	Luminosity-redshift relation	$D_L - z$
•	Angular size-redshift relation	$D_A - z$
•	Number-redshift relation	N(z)
•	Number-magnitude relation	N(m)
•	Tolman test	$\Sigma(z)$

- Standard Candle
- Standard Rod
 - Source counts with redshift
 - Source counts with magnitude
 - Surface brightness not distance independent in Robertson-Walker geometry

Other tests are possible. E.g., one could in principle make an age-redshift test - if one could confidently measure ages of objects at cosmic distances.

• Age-redshift relation

Figure 13.1. Lookback time as a function of redshift. The long dashes on the right-hand axis show the age to of the universe computed from $z \rightarrow \infty$. In panel (a) space curvature is negligible, and in panel (b) the cosmological constant, Λ , is negligibly small. The curves are labeled by the density parameter, Ω .

Figure 1. NIRSpec/PRISM Spectrum of RUBIES-UDS-QG-z7. Top: 2D SNR spectrum. Bottom: 1D spectrum of RUBIES-UDS-QG-z7 in red, with 1σ uncertainties in gray. The NIRCam photometry is shown as orange dots and the best-fitting SED from prospector in blue (see Section 3). A zoom-in to the region around 0.4μ m is shown in the inset panel, where we highlight the position of various absorption features. Note also that the best-fitting SED latches on the Balmer absorption lines.

Age-redshift test enabled by JWST observations

arXiv:2409.03829

Table 2. Physical properties of RUBIES-UDS-QG-z7, as measured with Prospector for the fiducial model (free Z) and the high metallicity (high-Z) fit.

quantity	fiducial	hig
$z_{ m spec}$	$7.287\substack{+0.007\\-0.006}$	7.2
$\log(M_*/{ m M}_\odot)$	$10.23\substack{+0.04\\-0.04}$	10.
$\log(\Sigma_{*,\mathrm{c}}/\mathrm{M}_{\odot}\mathrm{kpc}^{-2})$	$10.85\substack{+0.11 \\ -0.12}$	10.
${ m SFR_{10}} \; [{ m M_\odot}{ m yr^{-1}}]$	$0.64\substack{+0.83 \\ -0.60}$	1.0
$\rm SFR_{50}~[M_{\odot}yr^{-1}]$	$0.83\substack{+11.11 \\ -0.76}$	2.1
${\rm SFR_{100}}~[{\rm M_{\odot}~yr^{-1}}]$	$0.84\substack{+20.16 \\ -0.78}$	48.
A_V [mag]	$0.34\substack{+0.08\\-0.09}$	0.2
$t_{50} [{ m Gyr}]$	$0.20\substack{+0.07 \\ -0.02}$	0.1
$t_{90} \mathrm{[Gyr]}$	$0.12\substack{+0.01 \\ -0.01}$	0.0
$\log(Z/{ m Z}_{\odot})$	$-0.94\substack{+0.05\\-0.04}$	0.0

age-redshift test now possible with JWST

Tolman Test

No surface brightness dimming in Euclidean geometry

$$\Sigma \sim \frac{f}{\theta^2} \sim \frac{D^{-2}}{D^{-2}} \sim \text{constant}$$

Lots of surface brightness dimming in Robertson-Walker geometry

$$\Sigma \sim \frac{f}{\theta^2} \sim \frac{D_L^{-2}}{D_A^{-2}} \sim \frac{D_p^{-2}(1+z)^{-2}}{D_p^{-2}(1+z)^2} \sim (1+z)^{-4}$$

Surface brightness dims as a strong function of redshift!

The Tolman test is a sanity check: it does not distinguish between FLRW models: the same amount of dimming occurs in all. In practice, it is hard to distinguish from evolutionary effects.

Surface brightness dimming

• Angular size-redshift relation

Angular size-redshift relation

Li (2023) Fig. 4

angular sizes of compact radio sources

